MosMedData: data set of 1110 chest CT scans performed during the COVID-19 epidemic

Cover Page

Cite item

Abstract

With the ongoing COVID-19 pandemic decreasing availability of polymerase chain reaction with reverse transcription and the snowballing growth of medical imaging, especially the number of chest computed tomography (CT) scans being performed, methods to augment and automate the image analysis, increasing productivity and minimizing human error are of particular importance. The creation of high-quality datasets is essential for the development and validation of artificial intelligence algorithms. Such technologies have sufficient accuracy in diagnosing COVID-19 in medical imaging. The presented large-scale dataset contains anonymized human CT scans with COVID-19 features as well as normal studies. Some studies were tagged by radiologists using binary pixel masks of regions of interest (e.g., characteristic areas of consolidation and ground-glass opacities). CT data were acquired between March 1, 2020, and April 25, 2020, and provided by municipal hospitals in Moscow, Russia. The presented dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0).

About the authors

Sergey P. Morozov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: morozov@npcmr.ru
ORCID iD: 0000-0001-6545-6170
SPIN-code: 8542-1720

MD, PhD, Professor

Russian Federation, Moscow

Anna E. Andreychenko

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: a.andreychenko@npcmr.ru
ORCID iD: 0000-0001-6359-0763
SPIN-code: 6625-4186

MD

Russian Federation, Moscow

Ivan A. Blokhin

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: i.blokhin@npcmr.ru
ORCID iD: 0000-0002-2681-9378
SPIN-code: 3306-1387

MD

Russian Federation, Moscow

Pavel B. Gelezhe

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: gelezhe.pavel@gmail.com
ORCID iD: 0000-0003-1072-2202
SPIN-code: 4841-3234

MD, PhD

Russian Federation, Moscow

Anna P. Gonchar

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: a.gonchar@npcmr.ru
ORCID iD: 0000-0001-5161-6540
SPIN-code: 3513-9531

MD

Russian Federation, Moscow

Alexander E. Nikolaev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: a.e.nikolaev@yandex.ru
ORCID iD: 0000-0001-5151-4579
SPIN-code: 1320-1651

MD

Russian Federation, Moscow

Nikolay A. Pavlov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: n.pavlov@npcmr.ru
ORCID iD: 0000-0002-4309-1868
SPIN-code: 9960-4160

MD, MPA

Russian Federation, Moscow

Valeria Yu. Chernina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: v.chernina@npcmr.ru
ORCID iD: 0000-0002-0302-293X
SPIN-code: 8896-8051

MD

Russian Federation, Moscow

Victor A. Gombolevskiy

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Author for correspondence.
Email: g_victor@mail.ru
ORCID iD: 0000-0003-1816-1315
SPIN-code: 6810-3279

MD, PhD, MPH

Russian Federation, Moscow

References

  1. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in Coronavirus Disease 2019 (COVID19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–E40. doi: 10.1148/radiol.2020200642
  2. Handbook of COVID-19 Prevention and Treatment. Ed. by T. Liang. Zhejiang University School of Medicine; 2020. 68 p.
  3. Huang Z, Zhao S, Li Z, et al. The battle against Coronavirus Disease 2019 (COVID-19): emergency management and infection control in a Radiology Department. J Am Coll Radiol. 2020;17(6):710–716. doi: 10.1016/j.jacr.2020.03.011
  4. Morozov SP, Gombolevskiy VA, Cherninа VY, et al. Prediction of lethal outcomes in COVID-19 cases based on the results chest computed tomography. Tuberculosis and Lung Diseases. 2020;98(6):7–14. (In Russ.) doi: 10.21292/2075-1230-2020-98-6-7-14
  5. Morozov S, Guseva E, Ledikhova N, et al. Telemedicine-based system for quality management and peer review in radiology. Insights Imaging. 2018;9(3):337–341. doi: 10.1007/s13244-018-0629-y
  6. Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology. 2020;296(2):E65–E71. doi: 10.1148/radiol.2020200905
  7. Ucar F, Korkmaz D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Med Hypotheses. 2020;140:109761. doi: 10.1016/j.mehy.2020.109761
  8. Vremennye metodicheskie rekomendatsii “Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiya 9” (utv. Ministerstvom zdravookhraneniya RF 26 oktyabrya 2020). Available from: https://base.garant.ru/74810808/
  9. Morozov SP, Protsenko DN, Smetanina SV, editors. Radiation diagnostics of coronavirus disease (COVID-19): organization, methodology, interpretation of results: guidelines. Series “Best practices of radiation and instrumental diagnostics”. Issue 65. Moscow; 2020.
  10. Morozov SP, Vladzymyrskyy AV, Klyashtornyy VG, et al. Clinical acceptance of software based on artificial intelligence technologies (radiology). Series “Best practices in medical imaging”. Moscow; 2019. Issue 57.
  11. Cohen JP, Morrison P, Dao L. COVID-19 Image Data Collection [Internet]. 2020 [cited 2020 Mar 25]. Available from: https://arxiv.org/abs/2003.11597
  12. Jun M, Cheng G, Yixin W, et al. COVID-19 CT lung and infection segmentation dataset. Verson 1.0. 2020. doi: 10.5281/zenodo.3757476

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1: The order of forming a dataset.

Download (212KB)
3. Figure 2: Examples of chest CT scans of patients with varying degrees of COVID-19 severity. Left to right, upper row: axial CT slices of patients with COVID-19 from mild (CT-1) to critical (CT-4) severity. Left to right, lower row: same CT data after tagging.

Download (304KB)
4. Figure 3: Data storage structure in the dataset.

Download (263KB)

Copyright (c) 2020 Morozov S.P., Andreychenko A.E., Blokhin I.A., Gelezhe P.B., Gonchar A.P., Nikolaev A.E., Pavlov N.A., Chernina V.Y., Gombolevskiy V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».