Effects of temperature and precipitation anomalies on carbon dioxide and latent heat fluxes in wetland ecosystems

Cover Page

Cite item

Full Text

Abstract

This study conducted a comprehensive assessment of the response of wetland ecosystems in temperate and polar latitudes, located on different continents, to extreme weather events. These events included temperature anomalies (unusually high/low temperatures) and precipitation anomalies (droughts/intense precipitation). The analysis of the response net ecosystem exchange (NEE) of CO2 and latent heat (LE) fluxes to extreme temperature and precipitation events used ERA5 reanalysis data [Smith, 2011] and observations of CO2 and LE fluxes from the global FLUXNET database [https://fluxnet.org/data/]. Fifteen greenhouse gas flux monitoring stations were selected for the study, representing the longest and most continuous time series of observations. These stations are located on different continents, with eight stations in temperate latitudes and seven in polar regions. It should be noted that this study focused exclusively on the warm season. The beginning and end of the warm season were defined as the sustained crossing of the daily mean air temperature above 0°C for at least seven consecutive days.

For each station, daily anomalies of CO2 and LE fluxes were calculated as the deviation from the long-term mean values for the corresponding day of the year. Extremely high/low values of flux anomalies were identified as exceeding one standard deviation from the overall time series for each calendar month individually.

To identify periods with extreme air temperature values, ERA5 reanalysis data on two-meter air temperature every 3 hours with a spatial resolution of 0.25°×0.25° from 1991 to 2021 were used. To estimate extreme precipitation amounts, data from half-hourly station observations were used. Daily means were calculated from these data in a first step. Thresholds for defining extremely hot/cold periods were calculated as daily mean air temperature exceeding the 95th percentile (for anomalously hot periods) or not exceeding the 5th percentile (for anomalously cold periods) of a normal distribution with mean and standard deviation. The distribution was constructed for a specific month of the year and then averaged over the entire period considered. Two approaches were used to determine the extreme precipitation threshold. In the first approach, extreme precipitation days were defined as days with daily precipitation exceeding the 95th percentile of the probability density function (the Weibull distribution was used for precipitation). The second approach was based on the assessment of the Antecedent Precipitation Index (API), which determines the cumulative effect of precipitation on CO2 fluxes.

For the quantitative assessment of the relationship between temperature and precipitation extremes and flux anomalies, the percentages of days on which both the NEE/LE anomaly exceeded the standard deviation and the temperature/precipitation exceeded the 95th percentile for the upper threshold or the temperature did not reach the 5th percentile for the lower threshold were calculated. The percentage was calculated based on the total number of days when one of the characteristics (air temperature, daily sum of precipitation) exceeded the threshold.

The analysis showed that temperate and polar wetland ecosystems can respond differently to temperature and precipitation anomalies. These differences can be attributed to the geographic location of the ecosystem, regional climatic conditions, plant species composition, and the intensity of temperature and precipitation extremes. During the warm half of the year, periods of extremely high temperatures in temperate latitudes were associated with a positive CO2 flux anomaly, corresponding to an increased emission of CO2 into the atmosphere. In contrast, polar latitudes showed an opposite response - an increase in CO2 uptake by wetland ecosystems under anomalously high temperatures. This opposite response of CO2 fluxes may be related to the different soil moisture regimes in polar wetland ecosystems and the different plant species composition. Extremely high temperatures were accompanied by positive LE anomalies due to the intensification of evaporation processes with rising temperatures, a trend observed in all wetland ecosystems analyzed.

The immediate response of wetland ecosystems to intense precipitation (above the 95th percentile) was manifested as an increase in CO2 flux to the atmosphere at almost all stations analyzed. This observed response could be related to the "Birch effect" [Birch, 1964], which is characterized by an intensification of soil respiration due to a sudden increase in soil moisture and, consequently, an increase in the rate of decomposition and mineralization of organic matter during heavy precipitation and rising groundwater levels. LE flux decreases during intense precipitation, indicating suppression of evaporation due to high humidity and reduced incoming solar radiation.  The cumulative effect (API index) of extremely high precipitation is characterized by a predominance of extremely positive CO2 flux anomalies over negative ones in wetland ecosystems at both temperate and polar latitudes. It should also be noted that the percentage of days with increased CO2 uptake during the two weeks following intense precipitation is significantly higher than for the immediate response (10-25% of days in temperate latitudes and 5-20% of days in polar latitudes). The increase in CO2 uptake after heavy precipitation may be related to enhanced photosynthetic rates of the vegetation cover under sunny weather and optimal soil moisture conditions. A prolonged absence of precipitation, represented by extremely low API values, is accompanied by negative CO2 flux anomalies (enhanced uptake) at most of the studied wetland ecosystem stations, indicating a high adaptive potential of the studied wetland ecosystems to short-term (less than 14 days) dry periods. On the other hand, enhanced CO2 uptake could be facilitated by clear weather conditions, which prevail during dry periods and are accompanied by an increase in direct solar radiation and corresponding acceleration of photosynthetic processes.

It is noteworthy that flux anomalies often did not coincide with temperature or precipitation extremes, indicating that the functioning of wetland ecosystems is strongly influenced by multiple abiotic and biotic factors, which vary among different plant communities.

About the authors

E. М. Satosina

Lomonosov Moscow State University; A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science

Author for correspondence.
Email: lisan.sat@gmail.com
ORCID iD: 0009-0009-7086-2814

аспирант на кафедре метеорологии и климатологии, географический факультет, младший научный сотрудник в лаборатории эколого-климатических исследований в ИПЭЭ

Russian Federation, Moscow; Moscow

D. Yu. Gushchina

Lomonosov Moscow State University

Email: dasha155@mail.ru

географический факультет, кафедра метеорологии и климатологии

Russian Federation, Moscow

M. A. Tarasova

Lomonosov Moscow State University

Email: mkolennikova@mail.ru
ORCID iD: 0000-0003-1507-3088

географический факультет, кафедра метеорологии и климатологии

Russian Federation, Moscow

R. R. Gibadullin

Lomonosov Moscow State University

Email: ravil00121@mail.ru

географический факультет, кафедра метеорологии и климатологии

Russian Federation, Moscow

I. V. Zheleznova

Lomonosov Moscow State University

Email: zheleznovaiv@my.msu.ru

географический факультет, кафедра метеорологии и климатологии

Russian Federation, Moscow

E. R. Emelianova

A.N. Severtsov Institute of Ecology and Evolution Problems of the Russian Academy of Sciences

Email: katikget@yandex.ru

laboratory of ecological and climatic research

Russian Federation, Moscow

A. M. Osipov

Lomonosov Moscow State University

Email: sashaosipov@list.ru

географический факультет, кафедра метеорологии и климатологии

Russian Federation, Moscow

A. V. Olchev

Lomonosov Moscow State University

Email: aoltche@gmail.com

географический факультет, кафедра метеорологии и климатологии

Russian Federation, Moscow

References

  1. Anjileli H., Huning L.S., Moftakhari H., Ashraf S., Asanjan A.A., Norouzi H., AghaKouchak A. 2021. Extreme heat events heighten soil respiration. Scientific Reports., 11(1): 6632. https://doi.org/10.1038/s41598-021-85764-8.
  2. Aubinet M., Vesala T., Papale D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Dordrecht, The Netherlands, 2012; p. 438. ISBN 9789400723504.
  3. Belward A.S., Estes J., Kline K. et al. 1999. The IGBP-DIS global 1-km land-cover data set DIS-Cover: A project overview. Photogrammetric Engineering and Remote Sensing, 65(9): 1013-1020.
  4. Birch H.F. 1964. Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant Soil, 20, 43-49.
  5. Charrier G. Martin-StPaul N., Damesin C., Delpierre N., Hänninen H., Torres-Ruiz J.M., Davi H. 2021. Interaction of drought and frost in tree ecophysiology: rethinking the timing of risks. Annals of Forest Science. 78(2): 1-15. https://doi.org/10.1007/s13595-021-01052-5.
  6. Ciais P., Reichstein M., Viovy N. et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 437(7058): 529-533. doi: 10.1038/nature03972.
  7. Dinsmore K.J., Billett M.F., Dyson K.E. 2013. Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Global change biology, 19(7): 2133-2148. doi: 10.1111/gcb.12209.
  8. FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020; P. 11-23. doi: 10.4060/ca9825en.
  9. Frank D., Reichstein M., Bahn M., Thonicke K., Frank D., Mahecha M.D., Smith P., van der Velde M., Vicca S., Babst F. et al. 2015. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol., 21: 2861-2880. doi: 10.1111/gcb.12916.
  10. Fratini G., Mauder M. 2014. Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3. Atmospheric Measurement Techniques, 7(7): 2273-2281. doi: 10.5194/amt-7-2273-2014.
  11. Gill A.L., Giasson M.A., Yu, R., & Finzi A.C. 2017. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce‐dominated ombrotrophic bog. Global change biology, 23(12): 5398-5411. doi: 10.1111/gcb.13806.
  12. Gushchina D., Tarasova M., Satosina E. et al. 2023. The Response of Daily Carbon Dioxide and Water Vapor Fluxes to Temperature and Precipitation Extremes in Temperate and Boreal Forests, Climate, 11(10): 206. doi: 10.3390/cli11100206.
  13. Kramer R.D., Ishii H.R., Carter K.R., Miyazaki Y., Cavaleri M.A., Araki M.G., Azuma W.A., Inoue Y., Hara C. 2020. Predicting effects of climate change on productivity and persistence of forest trees. Ecol. Res., 35: 562-574. doi: 10.1111/1440-1703.12127.
  14. Li X., Wei Y., Li F. 2021. Optimality of antecedent precipitation index and its application. Journal of Hydrology, 595: 126027. doi: 10.1016/j.jhydrol.2021.126027.
  15. Mamkin V., Avilov V., Ivanov D., Varlagin A., & Kurbatova J. 2023. Interannual variability in the ecosystem CO2 fluxes at a paludified spruce forest and ombrotrophic bog in the southern taiga. Atmospheric Chemistry and Physics, 23(3), 2273-2291. doi: 10.5194/acp-23-2273-2023.
  16. Manzoni S., Chakrawal A., Fischer T., Schimel J.P., Porporato A., Vico G. 2020. Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration. Biogeosciences. 17(15): 4007-4023. doi: 10.5194/bg-17-4007-2020.
  17. Oechel W., Hastings S., Vourlrtis G. et al. 1993. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361: 520-523. doi: 10.1038/361520a0.
  18. Park S.B., Knohl A., Migliavacca M., Thum T., Vesala T., Peltola O., Mammarella I., Prokushkin A., Kolle O., Lavrič J., Park S.S. and Heimann M. 2021. Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia, Atmosphere, 12: 984, doi: 10.3390/atmos12080984.
  19. Post E., Forchhammer M.C., Bret-Harte M.S. et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science, 325(5946): 1355-1358. doi: 10.1126/science.1173113.
  20. Reichstein M., Falge E., Baldocchi D., Papale D., Aubinet M., Berbigier P., Bernhofer C., Buchmann N., Gilmanov T., Granier A. et al. 2005 On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol., 11: 1424-1439. doi: 10.1111/j.1365-2486.2005.001002.x.
  21. Ritter F., Berkelhammer M., Garcia-Eidell C. 2020. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun. Earth Environ. 1(1): 34 doi: 10.1038/s43247-020-00034-1.
  22. Scharlemann J.P., Tanner E.V., Hiederer R., Kapos V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1): 81-91. doi: 10.4155/cmt.13.77.
  23. Sirin A., Laine J. 2008. Peatlands and greenhouse gases, in: Assessment on peatlands, biodiversity and climate change, main report / Parish F., Sirin А., Charman D. et al. (eds.). Wageningen, Global Environment Centre, Kuala Lumpur and Wetlands International, pp. 118-138.
  24. Smith M.D. 2011. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol. 99: 656-663. doi: 10.1111/j.1365-2745.2011.01798.x
  25. The Changing State of the Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Masson-Delmotte V., Zhai P. et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 287-422; ISBN 9781009157896.
  26. The Data Portal serving the FLUXNET community. [Электронный ресурс]: https://fluxnet.org/data/, свободный. – Загл. с экрана.
  27. Ummenhofer C.C., Meeh I.G.A. 2017. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci., 372: 20160135. doi: 10.1098/rstb.2016.0135.
  28. Wutzler T., Lucas-Moffat A., Migliavacca M., Knauer J., Sickel K., Šigut L., Menzer O., Reichstein M. 2018. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences, 15: 5015-5030. doi: 10.5194/bg-15-5015-2018.
  29. Xu J., Morris P.J., Liu J., & Holden J. 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena, 160: 134-140. doi: 10.1016/j.catena.2017.09.010.
  30. Zhang Z. Ju, W., Zhou Y., & Li X. 2022 Revisiting the cumulative effects of drought on global gross primary productivity based on new long‐term series data (1982-2018). Global Change Biology, 28(11): 3620-3635. doi: 10.1111/gcb.16178.
  31. Zheleznova I.V., Gushchina D.Y. 2023. Variability of extreme air temperatures and precipitation in different natural zones in late XX and early XXI centuries according to ERA5 reanalysis data. Izv. Atmos. Ocean. Phys., 2023, 59: 479-488. doi: 10.31857/S0002351523050139 (in Russian) [Железнова И.В., Гущина Д.Ю. Изменчивость экстремальных температур воздуха и осадков в конце XX и начале XXI века в различных природных зонах по данным реанализа ERA5 // Известия РАН. Физика Атмосферы и Океана. 2023. Т. 59. С. 479-488. doi: 10.31857/S0002351523050139].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1 The FLUXNET stations selected for the analysis of the CO₂ flux response to extreme weather conditions.

Download (100KB)
3. Fig. 2. The percentage of days when CO₂ flux anomalies (NEE) and LE greater than 1 STD occurred simultaneously with extremely high (A) and extremely low (B) temperatures in temperate wetland ecosystems.

Download (87KB)
4. Fig. 3. The percentage of days when CO₂ flux anomalies (NEE) and LE greater than 1 STD occurred simultaneously with extremely high (A) and extremely low (B) temperatures in polar wetland ecosystems.

Download (78KB)
5. Fig. 4. The percentage of days when CO₂ flux anomalies (NEE) and LE greater than 1 STD occurred simultaneously with extremely high precipitation in temperate (A) and polar (B) wetland ecosystems.

Download (95KB)
6. Fig. 5. The percentage of days when CO₂ flux anomalies (NEE) and LE greater than 1 STD occurred simultaneously with extremely high (A) and extremely low (B) API values in temperate wetland ecosystems.

Download (97KB)
7. Fig. 6. The percentage of days when CO₂ flux anomalies (NEE) and LE greater than 1 STD occurred simultaneously with extremely high (A) and extremely low (B) API values in polar wetland ecosystems.

Download (94KB)

Copyright (c) 2024 Satosina E.М., Gushchina D.Y., Tarasova M.A., Gibadullin R.R., Zheleznova I.V., Emelianova E.R., Osipov A.M., Olchev A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».