Application of herbal medicinal raw material in complex treatment COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

COVID-19 is an acute respiratory viral infection caused by the coronavirus SARS-CoV-2 (2019-nCoV). Currently, approaches to coronavirus infusion are mostly confined to pathogenetic and symptomatic therapy. New treatment strategies include research to find new molecul candidates for COVID-19 treatment, as well as the repositioning of existing medicinal products. Recently, medicinal plants have been actively studied as potential candidates for COVID-19 treatment, showing high levels of antiviral activity and anti-inflammatory activity. This review focuses on medicinal plants whose biologically active substances are used or can be used for the treatment and the supportive therapy for a new coronavirus infection.

About the authors

Alyona S. Khaliullina

Kazan Federal University

Author for correspondence.
Email: anela_90@mail.ru
ORCID iD: 0000-0002-9914-5554
SPIN-code: 9050-6940
Scopus Author ID: 57201829240
ResearcherId: D-4833-2019

Cand. Sci. (Pharm.), Assistant Professor

Russian Federation, Kazan

Dilyara Kh. Shakirova

Kazan Federal University

Email: dhabilevna@mail.ru
ORCID iD: 0000-0002-7840-1985
SPIN-code: 1271-6870

Dr. Sci. (Pharm.), Professor, Head of the Department

Russian Federation, Kazan

Leysan A. Aliullina

Kazan Federal University

Email: aliullina98@mail.ru
ORCID iD: 0000-0002-6741-8394
SPIN-code: 2641-1158

Assistant Lecturer

Russian Federation, Kazan

Olga V. Morgatskaya

Kazan Federal University

Email: ol-morgatskaya@yandex.ru

student

Russian Federation, Kazan

References

  1. Rai P, Kumar BK, Deekshit VK, et al. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl Microbiol Biotechnol. 2021;105(2):441–455. doi: 10.1007/s00253-020-11061-5
  2. Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 2021;23(1):14. doi: 10.1208/s12248-020-00532-2
  3. Ministerstvo zdravookhraneniya Rossiiskoi Federatsii. Vremennye metodicheskie rekomendatsii: Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiya 15 (22.02.2022). (In Russ.)
  4. Rehman SU, Rehman SU, Yoo HH. COVID-19 challenges and its therapeutics. Biomed Phamacother. 2021;142:112015. doi: 10.1016/j.biopha.2021.112015
  5. Muthumanickam S, Kamaladevi A, Boomi P, et al. Indian ethnomedicinal phytochemicals as promising inhibitors of RNA-binding domain of SARS-CoV-2 nucleocapsid phosphoprotein: an in silico study. Front Mol Biosci. 2021;8:637329. doi: 10.3389/fmolb.2021.637329
  6. Alhazmi HA, Najmi A, Javed SA, et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front Immunol. 2021;12:637553. doi: 10.3389/fimmu.2021.637553
  7. Sreepadmanabh M, Sahu AK, Chande A. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. J Biosci. 2020;45(1):148. doi: 10.1007/s12038-020-00114-6
  8. Ullah S, Munir B, Al-Sehemi AG, et al. Identification of phytochemical inhibitors of SARS-CoV-2 protease 3CLpro from selected medicinal plants as per molecular docking, bond energies and amino acid binding energies. Saudi J Biol Sci. 2022;29(6):103274. doi: 10.1016/j.sjbs.2022.03.024
  9. Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell. 2020;11(10):707–722. doi: 10.1007/s13238-020-00738-2
  10. Li Z, Niu S, Guo B, et al. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis. Cell Prolif. 2020;53(12):e12939. doi: 10.1111/cpr.12939
  11. Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics. 2020;52(11):549–557. doi: 10.1152/physiolgenomics.00089.2020
  12. Chaachouay N, Douira A, Zidane L. COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco. Eur J Integr Med. 2021;42:101285. doi: 10.1016/j.eujim.2021.101285
  13. Chinsembu KC. Coronaviruses and nature’s pharmacy for the relief of coronavirus disease 2019. Rev Bras Farmacogn. 2020;30(5):603–621. doi: 10.1007/s43450-020-00104-7
  14. Adhikari B, Marasini BP, Rayamajhee B, et al. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res. 2021;35(3):1298–1312. doi: 10.1002/ptr.6893
  15. Khan T, Khan MA, Mashwani ZU, et al. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal Agric Biotechnol. 2021;31:101890. DOI: 0.1016/j.bcab.2020.101890
  16. Khan SA, Al-Balushi K. Combating COVID-19: The role of drug repurposing and medicinal plants. J Infect Public Health. 2021;14(4):495–503. doi: 10.1016/j.jiph.2020.10.012
  17. Jalali A, Dabaghian F, Akbrialiabad H, et al. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother Res. 2021;35(4):1925–1938. doi: 10.1002/ptr.6936
  18. Anand AV, Balamuralikrishnan B, Kaviya M, et al. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules. 2021;26(6):1775. doi: 10.3390/molecules26061775
  19. Maideen NMP. Prophetic medicine — Nigella Sativa (black cumin seeds) — potential herb for COVID-19? J Pharmacopuncture. 2020;23(2):62–70. doi: 10.3831/KPI.2020.23.010
  20. Imran M, Khan SA, Abida, et al. Nigella sativa L. and COVID-19: A glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules. 2022;27(9):2750. doi: 10.3390/molecules27092750
  21. Shirvani H, Rostamkhani F, Arabzadeh E, et al. Potential role of Nigella sativa supplementation with physical activity in prophylaxis and treatment of COVID-19: a contemporary review. Sport Sci Health. 2021;17(4):849–854. doi: 10.1007/s11332-021-00787-y
  22. Elebeedy D, Elkhatib WF, Kandeil A, et al. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Adv. 2021;11(47):29267–29286. doi: 10.1039/d1ra05268c
  23. Li J, Xu D, Wang L, et al. Glycyrrhizic Acid Inhibits SARS-CoV-2 infection by blocking spike protein-mediated cell attachment. Molecules. 2021;26(20):6090. doi: 10.3390/molecules26206090
  24. Li R, Wu K, Li Y, et al. Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: findings of bioinformatics analyses. Brief Bioinform. 2021;22(2):1161–1174. doi: 10.1093/bib/bbaa141
  25. Demeke CA, Woldeyohanins AE, Kifle ZD. Herbal medicine use for the management of COVID-19: a review article. Metabol Open. 2021;12:100141. doi: 10.1016/j.metop.2021.100141
  26. Zhong S, Guozhong H, Ninghao H, et al. Glycyrrhizic Acid: a natural plant ingredient as a drug candidate to treat COVID-19. Front Pharmacol. 2021;12:707205. doi: 10.3389/fphar.2021.707205
  27. Yu S, Zhu Y, Xu J, et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine. 2021;85:153364. doi: 10.1016/j.phymed.2020.153364
  28. Van de Sand L, Bormann M, Alt M, et al. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses. 2021;13(4):609. doi: 10.3390/v13040609
  29. Al-Kamel H, Grundmann O. Glycyrrhizin as a potential treatment for the novel coronavirus (COVID-19). Mini Rev Med Chem. 2021;21(16):2204–2208. doi: 10.2174/1389557521666210210160237
  30. Zheng W, Huang X, Lai Y, et al. Glycyrrhizic Acid for COVID-19: findings of targeting pivotal inflammatory pathways triggered by SARS-CoV-2. Front Pharmacol. 2021;12:631206. doi: 10.3389/fphar.2021.631206
  31. Lucas K, Fröhlich-Nowoisky J, Oppitz N, Ackermann M. Cinnamon and Hop extracts as potential immunomodulators for severe COVID-19 cases. Front Plant Sci. 2021;12:589783. doi: 10.3389/fpls.2021.589783
  32. Lin Y, Zang R, Ma Y, et al. Xanthohumol is a potent pan-inhibitor of coronaviruses targeting main protease. Int J Mol Sci. 2021;22(22):12134. doi: 10.3390/ijms222212134
  33. Teisseyre A, Chmielarz M, Uryga A, et al. Co-application of statin and flavonoids as an effective strategy to reduce the activity of voltage-gated potassium channels kv1.3 and induce apoptosis in human leukemic T cell line jurkat. Molecules. 2022;27(10):3227. doi: 10.3390/molecules27103227
  34. Buckett L, Schönberger S, Spindler V, et al. Synthesis of human phase I and phase II metabolites of hop (Humulus lupulus) prenylated flavonoids. Metabolites. 2022;12(4):345. doi: 10.3390/metabo12040345
  35. Xiong Y, Zhu GH, Wang HN, et al. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia. 2021;152:104909. doi: 10.1016/j.fitote.2021.104909
  36. Zrig A. The effect of phytocompounds of medicinal plants on coronavirus (2019-NCOV) infection. Pharm Chem J. 2022;55(10):1080–1084. doi: 10.1007/s11094-021-02540-8
  37. Silva ER, de Carvalho FO, Teixeira L, et al. Pharmacological effects of Carvacrol in in vitro studies: a review. Curr Pharm Des. 2018;24(29):3454–3465. doi: 10.2174/1381612824666181003123400
  38. Mieres-Castro D, Ahmar S, Shabbir R, Mora-Poblete F. Antiviral activities of Eucalyptus Essential Oils: Their effectiveness as therapeutic targets against human viruses. Pharmaceuticals (Basel). 2021;14(12):1210. doi: 10.3390/ph14121210
  39. Panikar S, Shoba G, Arun M, et al. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J Infect Public Health. 2021;14(5):601–610. doi: 10.1016/j.jiph.2020.12.037
  40. Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, et al. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: a cross-sectional survey. PLoS One. 2021;16(9):e0257165. doi: 10.1371/journal.pone.0257165
  41. Song JW, Long JY, Xie L, et al. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi and its probably potential therapeutic effects on COVID-19: a review. Chin Med. 2020;15:102. doi: 10.1186/s13020-020-00384-0
  42. Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem. 2021;36(1):497–503. doi: 10.1080/14756366.2021.1873977
  43. Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res. 2021;35(2):864–876. doi: 10.1002/ptr.6873
  44. Speciale A, Muscarà C, Molonia MS, et al. Silibinin as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytother Res. 2021;35(8):4616–4625. doi: 10.1002/ptr.7107
  45. Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol. 2022;198:101–110. doi: 10.1016/j.ijbiomac.2021.12.073
  46. Chinsembu KC. Coronaviruses and nature’s pharmacy for the relief of coronavirus disease 2019. Rev Bras Farmacogn. 2020;30(5):603–621. doi: 10.1007/s43450-020-00104-7
  47. Xu H, Li J, Song S, et al. Effective inhibition of coronavirus replication by Polygonum cuspidatum. Front Biosci (Landmark Ed). 2021;26(10):789–798. doi: 10.52586/4988
  48. Lewis DSM, Ho J, Wills S, et al. Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of papain like protease (PLpro) of SARS-CoV-2 in vitro. Sci Rep. 2022;12(1):2145. doi: 10.1038/s41598-022-06104-y
  49. Kandeel M, Kitade Y, Almubarak A. Repurposing FDA-approved phytomedicines, natural products, antivirals and cell protectives against SARS-CoV-2 (COVID-19) RNA-dependent RNA polymerase. Peer J. 2020;8:e10480. doi: 10.7717/peerj.10480
  50. Yalçın S, Yalçınkaya S, Ercan F. Determination of potential drug candidate molecules of the hypericum perforatum for COVID-19 treatment. Cur Pharmacol Rep. 2021;7(2):42–48. doi: 10.1007/s40495-021-00254-9
  51. Mohamed FF, Anhlan D, Schöfbänker M, et al. Hypericum perforatum and its ingredients hypericin and pseudohypericin demonstrate an antiviral activity against SARS-CoV-2. Pharmaceuticals (Basel). 2022;15(5):530. doi: 10.3390/ph15050530
  52. Khubber S, Hashemifesharaki R, Mohammadi M, et al. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr J. 2020;19(1):124. doi: 10.1186/s12937-020-00643-8
  53. Keflie TS, Biesalski HK. Micronutrients and bioactive substances: Their potential roles in combating COVID-19. Nutrition. 2021;84:111103. doi: 10.1016/j.nut.2020.111103

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Medicinal plants and their secondary metabolites with a high level of antiviral activity against SARS-CoV-2 (the figure is compiled by the authors on various sources cited in the article)

Download (412KB)
3. Table 1: Nigella sativa L.

Download (11KB)
4. Table 1: Salvia spp. Rosmarinic acid

Download (35KB)
5. Table 1: Salvia spp. Tanshinon

Download (22KB)
6. Table 1: Glycyrrhiza spp.

Download (60KB)
7. Table 1: Humulus lupulus L.

Download (28KB)
8. Table 1: Thymus serpyllum L. Thymol

Download (9KB)
9. Table 1: Thymus serpyllum L. Carvacrol

Download (9KB)
10. Table 1: Ginkgo biloba L. Bilobetin

Download (48KB)
11. Table 1: Ginkgo biloba L. Amentoflavone

Download (46KB)
12. Table 1. Mentha spp.

Download (8KB)
13. Table 1: Eucalyptus spp.

Download (9KB)
14. Table 1: Scutellaria galericulata L.

Download (39KB)
15. Table 1: Silybum marianum L.

Download (40KB)
16. Table 1: Polygonum cuspidatum Siebold & Zucc., Rheum palmatum L. var. tanguticum Maxim. ex Balf.

Download (22KB)
17. Table 1: Aloe arborescens Mill.

Download (34KB)
18. Table 1: Hypericum perforatum L.

Download (42KB)
19. Table 1: Allium sativum L.

Download (13KB)

Copyright (c) 2022 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».