Адипонектин и атеросклероз

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре представлены сведения об участии белка адипонектина, секретируемого адипоцитами, в атерогенезе. Рассмотрены вопросы, касающиеся регуляции продукции адипонектина, структуры его молекулярных форм, сигнальных механизмов действия данного адипокина. На основании анализа клинических исследований, а также результатов, полученных на животных и клеточных культурах, высказано предположение о наличии у адипонектина как антиатерогенных, так и проатерогенных свойств.

Об авторах

Дмитрий Андреевич Танянский

ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург; ФГБОУ ВО «Санкт-Петербургский государственный университет»; ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова»

Автор, ответственный за переписку.
Email: dmitry.athero@gmail.com

канд. мед. наук, заведующий лабораторией липопротеидов отдела биохимии

Россия, 197376, г. Санкт-Петербург, ул. Академика Павлова, д.12; 199034, г. Санкт-Петербург, Университетская наб., д.7/9; 197022, г. Санкт-Петербург, ул. Льва Толстого, 6-8

Нина Соломоновна Парфенова

ФГБНУ «Институт экспериментальной медицины»

Email: nina.parf@mail.ru

канд. мед. наук, старший научный сотрудник лаборатории липопротеидов отдела биохимии

Россия, 197376, г. Санкт-Петербург, ул. Академика Павлова, д.12

Нина Гавриловна Никульчева

ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург

Email: nikulcheva@mail.ru

д-р мед. наук, ведущий научный сотрудник лаборатории липопротеидов отдела биохимии

Россия, 197376, г. Санкт-Петербург, ул. Академика Павлова, д.12

Александр Дорофеевич Денисенко

ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург; ФГБОУ ВО «Санкт-Петербургский государственный университет»

Email: add@iem.sp.ru

д-р мед. наук, профессор, заведующий отделом биохимии

Россия, 197376, г. Санкт-Петербург, ул. Академика Павлова, д.12; 199034, г. Санкт-Петербург, Университетская наб., д.7/9

Список литературы

  1. Van de Voorde J, Pauwels B, Boydens C, Decaluwe K. Adipocytokines in relation to cardiovascular disease. Metabolism. 2013;62(11):1513-1521. https://doi.org/10.1016/j.metabol.2013.06.004.
  2. Yamauchi T, Kamon J, Waki H, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461-2468. https://doi.org/10.1074/jbc.M209033200.
  3. Ma Y, Liu D. Hydrodynamic delivery of adiponectin and adiponectin receptor 2 gene blocks high-fat diet-induced obesity and insulin resistance. Gene Ther. 2013;20(8):846-852. https://doi.org/10.1038/gt.2013.8.
  4. Bang OY, Saver JL, Ovbiagele B, et al. Adiponectin levels in patients with intracranial atherosclerosis. Neurology. 2007;68(22):1931-1937. https://doi.org/10.1212/01.wnl.0000263186.20988.9f.
  5. Wang Y, Zheng A, Yan Y, et al. Association between HMW adiponectin, HMW-total adiponectin ratio and early-onset coronary artery disease in Chinese population. Atherosclerosis. 2014;235(2):392-397. https://doi.org/10.1016/j.atherosclerosis.2014.05.910.
  6. Sook Lee E, Park SS, Kim E, et al. Association between adiponectin levels and coronary heart disease and mortality: a systematic review and meta-analysis. Int J Epidemiol. 2013;42(4):1029-1039. https://doi.org/10.1093/ije/dyt087.
  7. Wu ZJ, Cheng YJ, Gu WJ, Aung LH. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metabolism. 2014;63(9):1157-1166. https://doi.org/10.1016/j.metabol.2014.05.001.
  8. Scherer PE, Williams S, Fogliano M, et al. A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. J Biol Chem. 1995;270(45):26746-26749. https://doi.org/10.1074/jbc.270.45.26746.
  9. Wang ZV, Schraw TD, Kim JY, et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol Cell Biol. 2007;27(10):3716-3731. https://doi.org/10.1128/MCB.00931-06.
  10. Liu M, Zhou L, Xu A, et al. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proc Natl Acad Sci USA. 2008;105(47):18302-18307. https://doi.org/10.1073/pnas.0806341105.
  11. Pajvani UB, Du X, Combs TP, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem. 2003;278(11):9073-9085. https://doi.org/10.1074/jbc.M207198200.
  12. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA. 2001;98(4):2005-2010. https://doi.org/10.1073/pnas.98.4.2005.
  13. Waki H, Yamauchi T, Kamon J, et al. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology. 2005;146(2):790-796. https://doi.org/10.1210/en.2004-1096.
  14. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762-769. https://doi.org/10.1038/nature01705.
  15. Ding M, Carrao AC, Wagner RJ, et al. Vascular smooth muscle cell-derived adiponectin: a paracrine regulator of contractile phenotype. J Mol Cell Cardiol. 2012;52(2):474-484. https://doi.org/10.1016/j.yjmcc.2011.09.008.
  16. Kern PA, Di Gregorio GB, Lu T, et al. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α expression. Diabetes. 2003;52(7):1779-1785. https://doi.org/10.2337/diabetes.52.7.1779.
  17. Wong WT, Tian XY, Xu A, et al. Adiponectin is required for PPARgamma-mediated improvement of endothelial function in diabetic mice. Cell Metab. 2011;14(1):104-115. https://doi.org/10.1016/j.cmet.2011.05.009.
  18. Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005;46(7):1369-1379. https://doi.org/10.1194/jlr.M400373-JLR200.
  19. Kim JY, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621-2637. https://doi.org/10.1172/JCI31021.
  20. He Y, Lu L, Wei X, et al. The multimerization and secretion of adiponectin are regulated by TNF-alpha. Endocrine. 2016;51(3):456-468. https://doi.org/10.1007/s12020-015-0741-4.
  21. Jiang C, Kim JH, Li F, et al. Hypoxia-inducible factor 1alpha regulates a SOCS3-STAT3-adiponectin signal transduction pathway in adipocytes. J Biol Chem. 2013;288(6):3844-3857. https://doi.org/10.1074/jbc.M112.426338.
  22. Zhou L, Liu M, Zhang J, et al. DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes. 2010;59(11):2809-2816. https://doi.org/10.2337/db10-0412.
  23. Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin. Biochem J. 2009;425(1):41-52. https://doi.org/10.1042/BJ20091045.
  24. Ritchie IR, Dyck DJ. Rapid loss of adiponectin-stimulated fatty acid oxidation in skeletal muscle of rats fed a high fat diet is not due to altered muscle redox state. PLoS One. 2012;7(12):e52193. https://doi.org/10.1371/journal.pone.0052193.
  25. Zhou H, Song X, Briggs M, et al. Adiponectin represses gluconeogenesis independent of insulin in hepatocytes. Biochem Biophys Res Commun. 2005;338(2):793-799. https://doi.org/10.1016/j.bbrc.2005.10.007.
  26. Chen H, Zhang L, Li X, et al. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes. J Steroid Biochem Mol Biol. 2013;138:445-454. https://doi.org/10.1016/j.jsbmb.2013.08.013.
  27. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731-737. https://doi.org/10.1038/nm724.
  28. Tschritter O, Fritsche A, Thamer C, et al. Plasma Adiponectin Concentrations Predict Insulin Sensitivity of Both Glucose and Lipid Metabolism. Diabetes. 2003;52(2):239-243. https://doi.org/10.2337/diabetes.52.2.239.
  29. Tanyanskiy DA, Martynikhin IA, Rotar OP, et al. Association of adipokines with metabolic disorders in patients with schizophrenia: Results of comparative study with mental healthy cohort. Diabetes Metab Syndr. 2015;9(3):163-167. https://doi.org/10.1016/j.dsx.2015.04.009.
  30. Matsuura F, Oku H, Koseki M, et al. Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. Biochem Biophys Res Commun. 2007;358(4):1091-1095. https://doi.org/10.1016/j.bbrc.2007.05.040.
  31. Parker-Duffen JL, Nakamura K, Silver M, et al. T-cadherin is essential for adiponectin-mediated revascularization. J Biol Chem. 2013;288(34):24886-24897. https://doi.org/10.1074/jbc.M113.454835.
  32. Zhou L, Deepa SS, Etzler JC, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem. 2009;284(33):22426-22435. https://doi.org/10.1074/jbc.M109.028357.
  33. Holland WL, Miller RA, Wang ZV, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17(1):55-63. https://doi.org/10.1038/nm.2277.
  34. Wang Y, Meng RW, Kunutsor SK, et al. Plasma adiponectin levels and type 2 diabetes risk: a nested case-control study in a Chinese population and an updated meta-analysis. Sci Rep. 2018;8(1):406. https://doi.org/10.1038/s41598-017-18709-9.
  35. Kishida K, Nakagawa Y, Kobayashi H, et al. High serum C1q-binding adiponectin levels in male patients with acute coronary syndrome. Cardiovasc Diabetol. 2014;13:9. https://doi.org/10.1186/1475-2840-13-9.
  36. Yoon JH, Kim SK, Choi HJ, et al. Adiponectin provides additional information to conventional cardiovascular risk factors for assessing the risk of atherosclerosis in both genders. PLoS One. 2013;8(10):e75535. https://doi.org/10.1371/journal.pone.0075535.
  37. Ouchi N, Ohishi M, Kihara S, et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension. 2003;42(3):231-234. https://doi.org/10.1161/01.HYP.0000083488.67550.B8.
  38. Kim DH, Kim C, Ding EL, et al. Adiponectin levels and the risk of hypertension: a systematic review and meta-analysis. Hypertension. 2013;62(1):27-32. https://doi.org/10.1161/HYPERTENSIONAHA.113.01453.
  39. Chow WS, Cheung BM, Tso AW, et al. Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension. 2007;49(6):1455-1461. https://doi.org/10.1161/HYPERTENSIONAHA.107.086835.
  40. Daniels KM, Zavin A, Allsup K, et al. Serum adiponectin in non-cachectic heart failure patients. Int J Cardiol. 2013;168(4):4363-4364. https://doi.org/10.1016/j.ijcard.2013.05.059.
  41. Antonopoulos AS, Margaritis M, Coutinho P, et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 2014;34(9):2151-2159. https://doi.org/10.1161/ATVBAHA.114.303828.
  42. Wang X, Chen Q, Pu H, et al. Adiponectin improves NF-kappaB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis. 2016;15:33. https://doi.org/10.1186/s12944-016-0202-y.
  43. Nawrocki AR, Hofmann SM, Teupser D, et al. Lack of association between adiponectin levels and atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2010;30(6):1159-1165. https://doi.org/10.1161/ATVBAHA.109.195826.
  44. Li CJ, Sun HW, Zhu FL, et al. Local adiponectin treatment reduces atherosclerotic plaque size in rabbits. J Endocrinol. 2007;193(1):137-145. https://doi.org/10.1677/JOE-06-0173.
  45. Mori T, Koyama Y, Maeda N, et al. Ultrastructural localization of adiponectin protein in vasculature of normal and atherosclerotic mice. Sci Rep. 2014;4:4895. https://doi.org/10.1038/srep04895.
  46. Gasbarrino K, Zheng H, Hafiane A, et al. Decreased Adiponectin-Mediated Signaling Through the AdipoR2 Pathway Is Associated With Carotid Plaque Instability. Stroke. 2017;48(4):915-924. https://doi.org/10.1161/STROKEAHA.116.015145.
  47. Tanianskii DA, Pigarevsky PV, Maltceva SV, Denisenko AD. Immunohistochemical detection of adiponectin in atherosclerotic plaque. Atherosclerosis. 2018;275:e134-e135. https://doi.org/10.1016/ j.atherosclerosis.2018.06.393.
  48. Kostopoulos CG, Spiroglou SG, Varakis JN, et al. Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis? Cardiovasc Pathol. 2014;23(3):131-138. https://doi.org/10.1016/j.carpath.2014.02.003.
  49. Hattori Y, Hattori S, Kasai K. Globular Adiponectin Activates Nuclear Factor- B in Vascular Endothelial Cells, Which in Turn Induces Expression of Proinflammatory and Adhesion Molecule Genes. Diabetes Care. 2005;29(1):139-141. https://doi.org/10.2337/diacare.29.01.06.dc05-1364.
  50. Addabbo F, Nacci C, De Benedictis L, et al. Globular adiponectin counteracts VCAM-1-mediated monocyte adhesion via AdipoR1/NF-kappaB/COX-2 signaling in human aortic endothelial cells. Am J Physiol Endocrinol Metab. 2011;301(6):E1143-1154. https://doi.org/10.1152/ajpendo.00208.2011.
  51. Lee YA, Ji HI, Lee SH, et al. The role of adiponectin in the production of IL-6, IL-8, VEGF and MMPs in human endothelial cells and osteoblasts: implications for arthritic joints. Exp Mol Med. 2014;46:e72. https://doi.org/10.1038/emm.2013.141.
  52. Kobashi C, Urakaze M, Kishida M, et al. Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res. 2005;97(12):1245-1252. https://doi.org/10.1161/01.RES.0000194328.57164.36.
  53. Wang Y, Wang X, Lau WB, et al. Adiponectin inhibits tumor necrosis factor-alpha-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ Res. 2014;114(5):792-805. https://doi.org/10.1161/CIRCRESAHA.114.302439.
  54. Xu SQ, Mahadev K, Wu X, et al. Adiponectin protects against angiotensin II or tumor necrosis factor alpha-induced endothelial cell monolayer hyperpermeability: role of cAMP/PKA signaling. Arterioscler Thromb Vasc Biol. 2008;28(5):899-905. https://doi.org/10.1161/ATVBAHA.108.163634.
  55. Song W, Guo F, Zhong H, et al. Therapeutic window of globular adiponectin against cerebral ischemia in diabetic mice: the role of dynamic alteration of adiponectin/adiponectin receptor expression. Sci Rep. 2015;5:17310. https://doi.org/10.1038/srep17310.
  56. Du Y, Li R, Lau WB, et al. Adiponectin at Physiologically Relevant Concentrations Enhances the Vasorelaxative Effect of Acetylcholine via Cav-1/AdipoR-1 Signaling. PLoS One. 2016;11(3):e0152247. https://doi.org/10.1371/journal.pone.0152247.
  57. Adya R, Tan BK, Chen J, Randeva HS. Protective actions of globular and full-length adiponectin on human endothelial cells: novel insights into adiponectin-induced angiogenesis. J Vasc Res. 2012;49(6):534-543. https://doi.org/10.1159/000338279.
  58. Ouchi N, Kihara S, Arita Y, et al. Adipocyte-Derived Plasma Protein, Adiponectin, Suppresses Lipid Accumulation and Class A Scavenger Receptor Expression in Human Monocyte-Derived Macrophages. Circulation. 2001;103(8):1057-1063. https://doi.org/10.1161/01.cir.103.8.1057.
  59. Tian L, Luo N, Klein RL, et al. Adiponectin reduces lipid accumulation in macrophage foam cells. Atherosclerosis. 2009;202(1):152-161. https://doi.org/10.1016/j.atherosclerosis.2008.04.011.
  60. Furukawa K, Hori M, Ouchi N, et al. Adiponectin down-regulates acyl-coenzyme A:cholesterol acyltransferase-1 in cultured human monocyte-derived macrophages. Biochem Biophys Res Commun. 2004;317(3):831-836. https://doi.org/10.1016/j.bbrc.2004.03.123.
  61. Fitzgerald ML, Mujawar Z, Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis. 2010;211(2):361-370. https://doi.org/10.1016/j.atherosclerosis.2010.01.011.
  62. Tsubakio-Yamamoto K, Matsuura F, Koseki M, et al. Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochem Biophys Res Commun. 2008;375(3):390-394. https://doi.org/10.1016/j.bbrc.2008.08.009.
  63. Liang B, Wang X, Guo X, et al. Adiponectin upregulates ABCA1 expression through liver X receptor alpha signaling pathway in RAW 264.7 macrophages. Int J Clin Exp Pathol. 2015;8(1):450-457.
  64. Ohashi K, Parker JL, Ouchi N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem. 2010;285(9):6153-6160. https://doi.org/10.1074/jbc.M109.088708.
  65. Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ Res. 2011;108(8):985-995. https://doi.org/10.1161/CIRCRESAHA.110.233775.
  66. Sharma N, Lu Y, Zhou G, et al. Myeloid Kruppel-like factor 4 deficiency augments atherogenesis in ApoE-/- mice--brief report. Arterioscler Thromb Vasc Biol. 2012;32(12):2836-2838. https://doi.org/10.1161/ATVBAHA.112.300471.
  67. Tsatsanis C, Zacharioudaki V, Androulidaki A, et al. Adiponectin induces TNF-alpha and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. Biochem Biophys Res Commun. 2005;335(4):1254-1263. https://doi.org/10.1016/j.bbrc.2005.07.197.
  68. Haugen F, Drevon CA. Activation of nuclear factor-kappaB by high molecular weight and globular adiponectin. Endocrinology. 2007;148(11):5478-5486. https://doi.org/10.1210/en.2007-0370.
  69. Folco EJ, Rocha VZ, Lopez-Ilasaca M, Libby P. Adiponectin inhibits pro-inflammatory signaling in human macrophages independent of interleukin-10. J Biol Chem. 2009;284(38):25569-25575. https://doi.org/10.1074/jbc.M109.019786.
  70. Kumada M, Kihara S, Ouchi N, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 2004;109(17):2046-2049. https://doi.org/10.1161/01.CIR.0000127953.98131.ED.
  71. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709-721. https://doi.org/10.1038/nri3520.
  72. Matsuda M, Shimomura I, Sata M, et al. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem. 2002;277(40):37487-37491. https://doi.org/10.1074/jbc.M206083200.
  73. Ding M, Xie Y, Wagner RJ, et al. Adiponectin induces vascular smooth muscle cell differentiation via repression of mammalian target of rapamycin complex 1 and FoxO4. Arterioscler Thromb Vasc Biol. 2011;31(6):1403-1410. https://doi.org/10.1161/ATVBAHA.110.216804.
  74. Motobayashi Y, Izawa-Ishizawa Y, Ishizawa K, et al. Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal-regulated kinase 1/2 activation, but not Akt in vascular smooth muscle cells. Hypertens Res. 2009;32(3):188-193. https://doi.org/10.1038/hr.2008.19.
  75. Zhang W, Shu C, Li Q, et al. Adiponectin affects vascular smooth muscle cell proliferation and apoptosis through modulation of the mitofusin-2-mediated Ras-Raf-Erk1/2 signaling pathway. Mol Med Rep. 2015;12(3):4703-4707. https://doi.org/10.3892/mmr.2015.3899.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Строение молекулярных форм и сигнальные механизмы действия адипонектина: ACC1 — ацетил-КоА-карбоксилаза-1; AdipoR1/R2 — рецепторы адипонектина типов 1 и 2; AMPK — АМФ-зависимая протеинкиназа; APPL1 — адаптерный белок, содержащий домен, гомологичный плекстрину, фосфотирозин-связывающий домен и домен лейциновой застежки; Ca2+ — ионы кальция; CaMKK — киназа Ca2+-кальмодулин-зависимой киназы; eNOS — эндотелиальная синтетаза окиси азота NO; LKB1 — печеночная киназа-1; NF-κB — фактор транскрипции ядерный фактор κB; P — фосфорилированная форма белка; p38 — митоген-активируемая протеинкиназа p38; PLC — фосфолипаза С; PPARα — ядерный рецептор, активируемый пролифераторами пероксисом-α; S1P — сфингозин-1-фосфат; SphK — сфингозинкиназа; Глют-4 — глюкозный транспортер Глют-4

Скачать (362KB)
3. Рис. 2. Влияние адипонектина на клетки сосудистой стенки. Вертикальными жирными стрелками показаны подавляющие и стимулирующие эффекты адипонектина. Адипонектин ослабляет стимулированную фактором некроза опухоли-α (TNFα) экспрессию адгезионных молекул Е-селектина, молекул межклеточной адгезии-1 (ICAM-1), молекул адгезии сосудистого эндотелия-1 (VCAM-1) на поверхности эндотелиоцитов (Э), продукцию данными клетками хемокина интерлейкина-8 (ИЛ-8), а также TNFα-индуцированный парацеллюлярный транспорт белков плазмы крови через эндотелий и, предположительно, липопротеинов низкой плотности (ЛПНП). При этом адипонектин увеличивает продукцию эндотелиоцитами оксида азота (NO), обладающего антиадгезивным и антиишемическим действием. Адипонектин подавляет захват окисленных ЛПНП (окЛПНП) макрофагами, а также усиливает выведение холестерина из данных клеток на аполипопротеин А-1 (апо А-1) и липопротеины высокой плотности (ЛПВП) посредством стимуляции экспрессии АВС-кассетного транспортера АВСА-1. Адипонектин ослабляет липополисахарид- (ЛПС) и TNFα-зависимую дифференцировку моноцитов в провоспалительные макрофаги (М1), снижая тем самым выработку цитокинов TNFα, ИЛ-1, 12 и моноцитарного хемоаттрактаного протеина-1 (MCP-1), и стимулирует ИЛ-4-зависимую дифференцировку в антивоспалительные макрофаги М2, продуцирующие ИЛ-10. Адипонектин подавляет активность матриксных металлопротеиназ (MMP) посредством ИЛ-10-зависимого увеличения продукции макрофагами тканевого ингибитора MMP (TIMP), но при этом повышает продукцию MMP эндотелиоцитами. Адипонектин подавляет миграцию, пролиферацию и секреторную трансформацию сосудистых гладких миоцитов (ГМК) и увеличивает продукцию эндотелиоцитами фактора роста сосудистого эндотелия (VEGF)


© Танянский Д.А., Парфенова Н.С., Никульчева Н.Г., Денисенко А.Д., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».