Mytilus edulis hydrolysate enhances proliferation and protects endothelial cells against hypochlorous acid-induced oxidative stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Endothelial dysfunction underlies the pathogenesis of many socially significant diseases. The search for new original drugs for the treatment of this condition remains an important scientific and practical task. Anti-inflammatory, anticoagulant and antioxidant effects of bivalve mollusks from the family of mussels (Mytilus edulis) hydrolysate and its derivatives have been described in different model systems.

AIM: The purpose of this study was to investigate the effect of M. edulis hydrolysate on the functional activity of EA.hy926 endothelial cell line.

MATERIALS AND METHODS: The viability and metabolic activity of endothelial cells were studied in MTT-test. To investigate the proliferative activity, a test with staining of cells with crystal violet dye was used. The ability of the preparation to neutralize the toxic effect of HOCl and H2O2 was evaluated using fluorescent dyes and flow cytometry.

RESULTS: It was found that the preparation did not have cytotoxicity and significantly increased the proliferation of endothelial cells in dilutions from 1:10 to 1:60. The preparation had a neutralizing effect against HOCl, and in all the studied dilutions significantly increased the viability of the endothelium. The preparation was not effective against H2O2, and increased H2O2 toxic effect in the maximal studied concentration. At the same time, the anti-inflammatory effect of M. edulis hydrolysate was not confirmed in this model system. The preparation had no effect on the IL-8 production and adhesion molecule CD54 (ICAM-1) and tissue factor CD146 the expression.

CONCLUSIONS: The preparation of M. edulis hydrolysate enhances the proliferation of endothelial cells and is able to neutralize HOCl toxic effects.

About the authors

Eleonora A. Starikova

Institute of Experimental Medicine; Almazov National Medical Research Centre; Academician I.P. Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: starickova@yandex.ru
ORCID iD: 0000-0002-9687-7434
Scopus Author ID: 25932312000

Cand. Sci. (Biol.), Senior Research Associate, Department of Immunology; Assistant Professor of Department of Cell Biology and Histology; Assistant Professor, Department of Immunology

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Jennet T. Mammedova

Institute of Experimental Medicine

Email: jennet_m@mail.ru
ORCID iD: 0000-0003-4381-6993
ResearcherId: H-5067-2017

Research Associate, Department of Immunology

Russian Federation, Saint Petersburg

Olga Ya. Porembskaya

Institute of Experimental Medicine; North-Western State Medical University named after I.I. Mechnikov

Email: porembskaya@yandex.ru
ORCID iD: 0000-0003-3537-7409
Scopus Author ID: 56743328700

MD, Cand. Sсi. (Med.), Research Associate; Assistant Professor, Сardio-Vascular Department

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Castellon X, Bogdanova V. Chronic inflammatory diseases and endothelial dysfunction. Aging Dis. 2016;20(7(1)):81–89. doi: 10.14336/AD.2015.0803
  2. Keller TT, Mairuhu ATA, de Kruif MD, et al. Infections and endothelial cells. Cardiovasc Res. 2003;60(1):40–48. doi: 10.1016/S0008-6363(03)00354-7
  3. Prasad M, Leon M, Lerman LO, Lerman A. Viral endothelial dysfunction: a unifying mechanism for COVID-19. Mayo Clin Proc. 2021;96(12):3099–3108. doi: 10.1016/j.mayocp.2021.06.027
  4. Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020;202(3):361–370. doi: 10.1164/rccm.201910-1911TR
  5. Glassman PM, Myerson JW, Ferguson LT, et al. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev. 2020;157:96–117. doi: 10.1016/j.addr.2020.06.013
  6. Porembskaya OY, Starikova EA, Lobastov КV, et al. Target therapy for venous thrombosis: experimental extravagance or tangible future? Khirurg. 2022;(7–8):41–50. (In Russ.) doi: 10.33920/med-15-2204-05
  7. Tyurenkov IN, Perfilov VN, Ivanova LB, Karamysheva VI. Effect of GABA derivatives on endothelial function and antithrombotic state of the microcirculation in animals with experimental gestosis. Regional blood circulation and microcirculation. 2012;11(2):61–65. (In Russ.) doi: 10.24884/1682-6655-2012-11-2-61-65
  8. Lu WY, Li HJ, Li QY, Wu YC. Application of marine natural products in drug research. Bioorg Med Chem. 2021;35:116058. doi: 10.1016/j.bmc.2021.116058
  9. Starikova E, Mammedova J, Ozhiganova A, et al. Protective role of mytilus edulis hydrolysate in lipopolysaccharide-galactosamine acute liver injury. Front Pharmacol. 2021;12:667572. doi: 10.3389/fphar.2021.667572
  10. Charlet M, Chernysh S, Philippe H, et al. Innate immunity: Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, mytilus edulis. J Biol Chem. 1996;271(36):21808–21813. doi: 10.1074/jbc.271.36.21808
  11. Mitta G, Hubert F, Dyrynda EA, et al. Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev Comp Immunol. 2000;24(4):381–393. doi: 10.1016/S0145-305X(99)00084-1
  12. Mitta G, Vandenbulcke F, Hubert F, et al. Involvement of Mytilins in mussel antimicrobial defense. J Biol Chem. 2000;275(17):12954–12962. doi: 10.1074/jbc.275.17.1295
  13. Roch P, Yang Y, Toubiana M, Aumelas A. NMR structure of mussel mytilin, and antiviral–antibacterial activities of derived synthetic peptides. Dev Comp Immunol. 2008;32(3):227–238. doi: 10.1016/j.dci.2007.05.006
  14. Romestand B, Molina F, Richard V, et al. Key role of the loop connecting the two beta strands of mussel defensin in its antimicrobial activity. Eur J Biochem. 2003;270(13):2805–2813. doi: 10.1046/j.1432-1033.2003.03657.x
  15. Jung WK, Kim SK. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, mytilus edulis. Food Chem. 2009;117(4):687–692. doi: 10.1016/j.foodchem.2009.04.077
  16. Leung M, Stefano GB. Isolation of molluscan opioid peptides. Life Sci. 1983;33 Suppl 1:77–80. doi: 10.1016/0024-3205(83)90448-4
  17. Feng L, Tu M, Qiao M, et al. Thrombin inhibitory peptides derived from mytilus edulis proteins: identification, molecular docking and in silico prediction of toxicity. Eur Food Res Technol. 2018;244(2):207–217. doi: 10.1007/s00217-017-2946-7
  18. Qiao M, Tu M, Wang Z, et al. Identification and antithrombotic activity of peptides from blue mussel (mytilus edulis) protein. Int J Mol Sci. 2018;19(1):138. doi: 10.3390/ijms19010138
  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4
  20. Newman JMB, DiMaria CA, Rattigan S, et al. Relationship of MTT reduction to stimulants of muscle metabo-lism. Chem Biol Interact. 2000;128(2):127–140. doi: 10.1016/s0009-2797(00)00192-7
  21. Kim YS, Ahn CB, Je JY. Anti-inflammatory action of high molecular weight mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem. 2016;202:9–14. doi: 10.1016/j.foodchem.2016.01.114
  22. Lindqvist HM, Gjertsson I, Eneljung T, Winkvist A. Influence of blue mussel (mytilus edulis) intake on disease activity in female patients with rheumatoid arthritis: The MIRA randomized cross-over dietary intervention. Nutrients. 2018;10(4):E481. doi: 10.3390/nu10040481
  23. McPhee S, Hodges L, Wright PFA, et al. Prophylactic and therapeutic effects of mytilus edulis fatty acids on adjuvant-induced arthritis in male wistar rats. Prostaglandins Leukot Essent Fatty Acids. 2010;82(2–3):97–103. doi: 10.1016/j.plefa.2009.12.003
  24. Park SY, Ahn CB, Je JY. Antioxidant and anti-inflammatory activities of protein hydrolysates from mytilus edulis and ultrafiltration membrane fractions. J Food Biochem. 2014;38(5):460–468. doi: 10.1111/jfbc.12070
  25. Wang B, Li L, Chi CF, et al. Purification and characterization of a novel antioxidant peptide derived from blue mussel (mytilus edulis) protein hydrolysate. Food Chem. 2013;138(2–3):1713–1719. doi: 10.1016/j.foodchem.2012.12.002
  26. Je JY, Park PJ, Byun HG, et al. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, mytilus edulis. Bioresour Technol. 2005;96(14):1624–1629. doi: 10.1016/j.biortech.2005.01.001
  27. Rajapakse N, Mendis E, Jung WK, et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int. 2005;38(2):175–182. doi: 10.1016/j.foodres.2004.10.002
  28. Neves AC, Harnedy PA, Fitzgerald RJ. Angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory, and antioxidant activities of a blue mussel (mytilus edulis) meat protein extract and its hydrolysate. J Aquat Food Prod Technol. 2016;25(8):1221–1233. doi: 10.1080/10498850.2015.1051259

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of M. edulis hydrolyzate on the activity of mitochondrial dehydrogenases in EA.hy926 cells. The effect of the agent on endothelial cells was assessed using the MTT assay. The results were presented as a percentage, and the optical density in the control wells containing the culture medium without additives was 100%. Here and below, data were tested for normal distribution using the Shapiro–Wilk test. The significance of differences between the control and experimental samples was assessed by the one-way analysis of variance (p < 0.001), and a pairwise comparison of the mean values was performed using Dunnett and Tukey’s post hoc tests. Data were presented as mean (M) ± standard deviation (SD). Differences were significant in comparison with the control at * p < 0.001 (n = 24)

Download (129KB)
3. Fig. 2. The effect of M. edulis hydrolysate on EA.hy926 cell proliferation. Endothelial cell proliferation was assessed using crystal violet dye. The results were expressed as a percentage, taking the optical density in control wells containing culture medium as 100%. Differences were significant in comparison with the control at * p < 0.001 (n = 18)

Download (126KB)
4. Fig. 3. The effect of M. edulis hydrolysate on the viability of EA.hy926 cells after incubation in the presence of H2O2 (a) and HOCl (b). M. edulis hydrolysate was added in dilution of 1:5 (v/v). Cell viability was assessed by cell staining with fluorescent dyes YO-PRO® and propidium iodide, which freely penetrate into cells in state of early apoptosis and necrosis/late apoptosis, respectively. The samples were analyzed using flow cytometry. The differences are significant for living cells: * р < 0.001, ** р < 0.05; for necrotic cells: & p < 0.001, && p < 0.01; for apoptotic cells: ●●● p < 0.001, ●● p < 0.01, ● p < 0.05; n = 3

Download (298KB)
5. Fig. 4. The effect of M. edulis hydrolysate on the IL-8 secretion (a) and level of activation markers: adhesion molecule CD54 (ICAM-1) (b) and tissue factor CD142 (c) on EA.hy926 cells. The concentration of IL-8 in cell culture supernatants was determined using ELISA. The expression of CD54 and CD142 molecules on endothelial cells was evaluated using monoclonal antibodies and flow cytometry. Differences were significant in comparison with the control at * р < 0,001; n = 8 (a), 4 (b, c)

Download (319KB)

Copyright (c) 2023 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».