Apo-form of recombinant human lactoferrin changes the genome-wide DNA methylation level and the chromatin compaction degree in neuroblastoma cell line IMR-32

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Neuroblastoma is one of the most common extracranial solid tumors in childhood. At present, epigenetic disorders play a significant role in neoplasms development. Since epigenetic changes in the cell are quite dynamic and reversible, epigenome-modulating exogenous agents can be used in epigenetic targeted therapy for various types of tumors. Therefore, the identification of these agents is still significant. Lactoferrin is one such potential molecule from the transferrin family. Currently, the anti-tumor properties of lactoferrin have been identified, but its effect on the epigenome of cells of various tumors types, particularly on neuroblastomas, is practically unknown.

AIM: To study the effect of the exogenous recombinant human apolactoferrin on the viability and epigenomic status of IMR-32 neuroblastoma cells.

MATERIALS AND METHODS: We studied human IMR-32 neuroblastoma cells after 72 hours of exposure to 8 doses of recombinant human apolactoferrin: 0.1, 0.5, 1, 5, 10, 50, 100 and 500 µg/ml. The level of genome-wide DNA methylation and the degree of chromatin compaction in IMR-32 cells were quantified using commercial kits 5-mC DNA ELISA Kit, Global DNA Methylation – LINE-1 Kit, as well as enzymatic hydrolysis of MspI / HpaII and DNaseI.

RESULTS: The recombinant apolactoferrin reduces the viability of IMR-32 and, depending on the dose, differentially affects the level of genome-wide DNA methylation (СpG dinucleotides, CCGG sites, LINE-1 repeats) and the degree of chromatin compaction. At the same time, a complex picture of the epigenomic cellular response to the effect of apo-lactoferrin was observed (nonlinear nonmonotonic dose-effect relationship).

CONCLUSIONS: We assumed that apolactoferrin modulates gene activity through epigenetic mechanisms, in particular, by changing the DNA methylation pattern and affecting the chromatin structure, which may be one of the molecular mechanisms of its anti-tumor effect.

About the authors

Irina O. Suchkova

Institute of Experimental Medicine

Author for correspondence.
Email: irsuchkova@mail.ru
ORCID iD: 0000-0003-2127-0459
SPIN-code: 4155-7314
Scopus Author ID: 6602838276
ResearcherId: H-4484-2014

Cand. Sci. (Biol.), Senior Research Associate, Laboratory of Molecular cytogenetics of mammalian development, Department of Molecular genetics

Russian Federation, Saint Petersburg

Kinda Ali Sharrouf

Institute of Experimental Medicine

Email: kinda996@yahoo.com
ORCID iD: 0000-0003-0926-0549

Master of Biology, PhD student, Laboratory of Molecular cytogenetics of mammalian development, Department of Molecular genetics

Russian Federation, Saint Petersburg

Liudmila K. Sasina

Institute of Experimental Medicine

Email: sassinal@googlemail.com
ORCID iD: 0000-0002-5848-5544
SPIN-code: 6374-1649
Scopus Author ID: 6602092195
ResearcherId: J-8619-2018

Cand. Sci. (Biol.), Senior Research Associate, Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics

Russian Federation, Saint Petersburg

Natalia I. Dergacheva

Institute of Experimental Medicine

Email: natalia-9999@mail.ru
ORCID iD: 0000-0002-1643-9558
SPIN-code: 3343-2970
Scopus Author ID: 57198516110
ResearcherId: J-8543-2018

Master of Biology, Research Associate, Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics

Russian Federation, Saint Petersburg

Tatyana V. Baranova

Institute of Experimental Medicine

Email: tanjabaranova@mail.ru
ORCID iD: 0000-0002-8269-8881
SPIN-code: 1356-1402
Scopus Author ID: 57205972796

Cand. Sci. (Biol.), Junior Research Associate, Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics

Russian Federation, Saint Petersburg

Eugene L. Patkin

Institute of Experimental Medicine

Email: elp44@mail.ru
ORCID iD: 0000-0002-6292-4167
SPIN-code: 4929-4630
Scopus Author ID: 7003713993
ResearcherId: J-7779-2013

Dr. Sci. (Biol.), Professor, Head of Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics

Russian Federation, Saint Petersburg

References

  1. Stroganova AM, Karseladze AI. Neuroblastoma: morphological pattern, molecular genetic features, and prognostic factors. Advances in Molecular Oncology. 2016;3(1):32–43. (In Russ.) doi: 10.17650/2313-805X.2016.3.1.32-43
  2. Gómez S, Castellano G, Mayol G, et al. DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights. Genome Data. 2015;5:360–363. doi: 10.1016/j.gdata.2015.07.016
  3. Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, et al. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood). 2020;245(18):1637–1647. doi: 10.1177/1535370220949237
  4. Fetahu IS, Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev. 2021;40(1):173–189. doi: 10.1007/s10555-020-09946-y
  5. Yang Q, Tian Y, Ostler KR, et al. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines. BMC Cancer. 2010;10:286. doi: 10.1186/1471-2407-10-286
  6. Jubierre L, Jiménez C, Rovira E, et al. Targeting of epigenetic regulators in neuroblastoma. Exp Mol Med. 2018;50(4):1–12. doi: 10.1038/s12276-018-0077-2
  7. Upton K, Modi A, Patel K, et al. Epigenomic profiling of neuroblastoma cell lines. Sci Data. 2020;7(1):116. doi: 10.1038/s41597-020-0458-y
  8. Yáñez Y, Grau E, Rodríguez-Cortez VC, et al. Two independent epigenetic biomarkers predict survival in neuroblastoma. Clin Epigenetics. 2015;7(1):16. doi: 10.1186/s13148-015-0054-8
  9. Olsson M, Beck S, Kogner P, et al. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors. Epigenetics. 2016;11(1):74–84. doi: 10.1080/15592294.2016.1138195
  10. Kiss NB, Kogner P, Johnsen JI, et al. Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas. BMC Med Genet. 2012;13:83. doi: 10.1186/1471-2350-13-83
  11. Gómez S, Castellano G, Mayol G, et al. DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights. Epigenomics. 2015;7(7):1137–1153. doi: 10.2217/epi.15.49
  12. Muotri AR, Marchetto MC, Coufal NG, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature. 2010;468(7322):443–446. doi: 10.1038/nature09544
  13. Giorgi G, Marcantonio P, Del Re B. LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res. 2011;346(3):383–391. doi: 10.1007/s00441-011-1289-0
  14. Jönsson ME, Ludvik Brattås P, Gustafsson C, et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun. 2019;10(1):3182. doi: 10.1038/s41467-019-11150-8
  15. Dyachenko OV, Schevchuk TV, Kretzner L, et al. Human non-CG methylation: are human stem cells plant-like? Epigenetics. 2010;5(7):569–572. doi: 10.4161/epi.5.7.12702
  16. Whongsiri P, Pimratana C, Wijitsettakul U, et al. Oxidative stress and LINE-1 reactivation in bladder cancer are epigenetically linked through active chromatin formation. Free Radic Biol Med. 2019;134:419–428. doi: 10.1016/j.freeradbiomed.2019.01.031
  17. Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174(1):27–37. 20080507. doi: 10.1016/j.cbi.2008.05.003
  18. Zhai K, Brockmüller A, Kubatka P, et al. Curcumin’s beneficial effects on neuroblastoma: mechanisms, challenges, and potential solutions. Biomolecules. 2020;10(11):1469. doi: 10.3390/biom10111469
  19. Borzenkova NV, Balabushevich NG, Larionova NI. Lactoferrin: physical and chemical properties, biological functions, delivery systems, pharmaceutical and nutraceutical preparations (review). Biopharmaceutical Journal. 2010;2(3):3–19. (In Russ.)
  20. Hao L, Shan Q, Wei J, et al. Lactoferrin: Major physiological functions and applications. Curr Protein Pept Sci. 2019;20(2):139–144. doi: 10.2174/1389203719666180514150921
  21. Aleshina G.M. Lactoferrin — an endogenous regulator of the protective functions of the organism. Medical Academic Journal. 2019;19(1):35–44. (In Russ.) doi: 10.17816/MAJ19135-44
  22. Zakharova ET, Kostevich VA, Sokolov AV, Vasilyev VB. Human apo-lactoferrin as a physiological mimetic of hypoxia stabilizes hypoxia-inducible factor-1 alpha. Biometals. 2012;25(6):1247–1259. doi: 10.1007/s10534-012-9586-y
  23. Sokolov AV, Dubrovskaya NM, Kostevich VA, et al. Lactoferrin induces erythropoietins and rescues cognitive functions in the offspring of rats subjected to prenatal hypoxia. Nutrients. 2022;14(7):1399. doi: 10.3390/nu14071399
  24. Suzuki YA, Lopez V, Lönnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. 2005;62(22):2560–2575. doi: 10.1007/s00018-005-5371-1
  25. Li YQ, Guo C. A review on lactoferrin and centraln system diseases. Cells. 2021;10(7):1810. doi: 10.3390/cells10071810
  26. García-Montoya IA, Cendón TS, Arévalo-Gallegos S, et al. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta. 2012;1820(3):226–236. doi: 10.1016/j.bbagen.2011.06.018
  27. Gibbons JA, Kanwar RK, Kanwar JR. Lactoferrin and cancer in different cancer models. Front Biosci (Schol Ed). 2011;3(3):1080–1088. doi: 10.2741/212
  28. Zhang Y, Lima CF, Rodrigues LR. Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutr Rev. 2014;72(12):763–773. doi: 10.1111/nure.12155
  29. Iijima H, Tomizawa Y, Iwasaki Y, et al. Genetic and epigenetic inactivation of LTF gene at 3p21.3 in lung cancers. Int J Cancer. 2006;118(4):797–801. doi: 10.1002/ijc.21462
  30. Mariller C, Hardivillé S, Hoedt E, et al. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor. Biochem Cell Biol. 2012;90(3):307–319. doi: 10.1139/o11-070
  31. Porter CM, Haffner MC, Kulac I, et al. Lactoferrin CpG island hypermethylation and decoupling of mRNA and protein expression in the early stages of prostate carcinogenesis. Am J Pathol. 2019;189(11):2311–2322. doi: 10.1016/j.ajpath.2019.07.016
  32. Zhou Y, Zeng Z, Zhang W, et al. Lactotransferrin: a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway. Int J Cancer. 2008;123(9):2065–2072. doi: 10.1002/ijc.23727
  33. Zalutskii IV, Lukianova NY, Storchai DM, et al. Influence of exogenous lactoferrin on the oxidant/antioxidant balance and molecular profile of hormone receptor-positive and -negative human breast cancer cells in vitro. Exp Oncol. 2017;39(2):106–111.
  34. Li HY, Li P, Yang HG, et al. Investigation and comparison of the anti-tumor activities of lactoferrin, α-lactalbumin, and β-lactoglobulin in A549, HT29, HepG2, and MDA231-LM2 tumor models. J Dairy Sci. 2019;102(11):9586–9597. doi: 10.3168/jds.2019-16429
  35. Li H, Yao Q, Min L, et al. The Combination of two bioactive constituents, lactoferrin and linolenic acid, inhibits mouse xenograft esophageal tumor growth by downregulating lithocholyltaurine and inhibiting the JAK2/STAT3-related pathway. ACS Omega. 2020;5(33):20755–20764. doi: 10.1021/acsomega.0c01132
  36. Elizarova A, Sokolov A, Kostevich V, et al. Interaction of lactoferrin with unsaturated fatty acids: In vitro and in vivo study of human lactoferrin/oleic acid complex cytotoxicity. Materials (Basel). 2021;14(7):1602. doi: 10.3390/ma14071602
  37. Cutone A, Rosa L, Ianiro G, et al. Lactoferrin’s anti-cancer properties: safety, selectivity, and wide range of action. Biomolecules. 2020;10(3):456. doi: 10.3390/biom10030456
  38. Eliassen LT, Berge G, Leknessund A, et al. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer. 2006;119(3):493–500. doi: 10.1002/ijc.21886
  39. Arcella A, Oliva MA, Staffieri S, et al. In vitro and in vivo effect of human lactoferrin on glioblastoma growth. J Neurosurg. 2015;123(4):1026–1035. doi: 10.3171/2014.12.JNS14512
  40. Verduci E, Banderali G, Barberi S, et al. Epigenetic effects of human breast milk. Nutrients. 2014;6(4):1711–1724. doi: 10.3390/nu6041711
  41. Zhang TN, Liu N. Effect of bovine lactoferricin on DNA methyltransferase 1 levels in Jurkat T-leukemia cells. J Dairy Sci. 2010;93(9):3925–3930. doi: 10.3168/jds.2009-3024
  42. Lebedev DV, Zabrodskaya YA, Pipich V, et al. Effect of alpha-lactalbumin and lactoferrin oleic acid complexes on chromatin structural organization. Biochem Biophys Res Commun. 2019;520(1):136–139. doi: 10.1016/j.bbrc.2019.09.116
  43. Jögi A, Øra I, Nilsson H, et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA. 2002;99(10):7021–7026. doi: 10.1073/pnas.102660199
  44. Westerlund I, Shi Y, Toskasa K, et al. Combined epigenetic and differentiation-based treatment inhibits neuroblastoma tumor growth and links HIF2α to tumor suppression. Proc Natl Acad Sci USA. 2017;114(30):E6137–E6146. doi: 10.1073/pnas.1700655114
  45. Camuzi D, de Amorim Í, Ribeiro Pinto LF, et al. Regulationi in the air: the relationship between hypoxia and epigenetics in cancer. Cells. 2019;8(4):300. doi: 10.3390/cells8040300
  46. D’Anna F, Van Dyck L, Xiong J, et al. DNA methylation repels binding of hypoxia-inducible transcription factors to maintain tumor immunotolerance. Genome Biol. 2020;21(1):182. doi: 10.1186/s13059-020-02087-z
  47. Sharrouf KA, Suchkova IO. The influence of lactoferrin on the epigenetic characteristics of mammalian cells of different types. Medical Academic Journal. 2021;21(1):85–95. doi: 10.17816/MAJ64106
  48. Lebedev TD, Spirin PV, Orlova NN, et al. Comparative analysis of gene expression: Targeted antitumor therapy in neuroblastoma cell lines. Mol Biol (Mosk). 2015;49(6):1048–1051. (In Russ.) doi: 10.1134/S0026893315050225
  49. Harenza JL, Diamond MA, Adams RN, et al. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines. Sci Data. 2017;4:170033. doi: 10.1038/sdata.2017.33
  50. Ram Kumar RM, Schor NF. Methylation of DNA and chromatin as a mechanism of oncogenesis and therapeutic target in neuroblastoma. Oncotarget. 2018;9(31):22184–22193. doi: 10.18632/oncotarget.25084
  51. Polyanskaya GG, Sakuta GA, Yeropkin MY, et al. Katalog rossiyskoy kollektsii kletochnykh kul’tur pozvonochnykh (RKKK P). Saint Petersburg; 2018. [Internet]. Available from: https://incras.ru/wp-content/uploads/2022/05/katalog_rccc_v_2018_rus.pdf. Accessed: Feb 10, 2022. (In Russ.)
  52. Lee J-M, Anderson PC, Padgitt JK, et al. Nrf2, not the estrogen receptor, mediates catechol estrogen-induced activation of the antioxidant responsive element. Biochim Biophys Acta. 2003;1629(1–3):92–101. doi: 10.1016/j.bbaexp.2003.08.006
  53. Su C, Rybalchenko N, Schreihofer DA, et al. Cell models for the study of sex steroid hormone Neurobiology. J Steroids Horm Sci. 2012;S2:003. doi: 10.4172/2157-7536.s2-003
  54. El-Maarri O, Walier M, Behne F, et al. Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLoS One. 2011;6(1):e16252. doi: 10.1371/journal.pone.0016252
  55. Hsu CC, Leu YW, Tseng MJ, et al. Functional characterization of Trip10 in cancer cell growth and survival. J Biomed Sci. 2011;18:12. doi: 10.1186/1423-0127-18-12
  56. Semak I, Budzevich A, Maliushkova E, et al. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin. Transgenic Res. 2019;28(5–6):465–478. doi: 10.1007/s11248-019-00165-y
  57. Mitroshina EV, Mishchenko TA, Vedunova MV. Opredeleniye zhiznesposobnosti kletochnykh kul’tur: uchebno-metodicheskoye posobiye. Nizhniy Novgorod: Nizhegorodskiy gosuniversitet im. N.I. Lobachevskogo; 2015. (In Russ.)
  58. Suguna S, Nandal DH, Kamble S, et al. Genomic DNA isolation from human whole blood samples by non-enzymatic salting out method. Int J Pharm Pharmac Sci. 2014;6(6):198–199.
  59. zymoresearch.com [Internet]. 5-mC DNA ELISA Kit. Available from: https://www.zymoresearch.com/products/5-mc-dna-elisa-kit. Accssed: Apr 05, 2022.
  60. Suchkova IO, Sasina LK, Dergacheva NI, et al. The influence of low dose bisphenol A on whole genome DNA methylation and chromatin compaction in different human cell lines. Toxicol In Vitro. 2019;58:26–34. doi: 10.1016/j.tiv.2019.03.010
  61. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
  62. Ling G, Waxman DJ. DNase I digestion of isolated nulcei for genome-wide mapping of DNase hypersensitivity sites in chromatin. Methods Mol Biol. 2013;977:21–33. doi: 10.1007/978-1-62703-284-1_3
  63. Lu Q, Richardson B. DNaseI hypersensitivity analysis of chromatin structure. Methods Mol Biol. 2004;287:77–86. doi: 10.1385/1-59259-828-5:077
  64. Keuser B, Khobta A, Galle K, et al. Influences of histone deacetylase inhibitors and resveratrol on DNA repair and chromatin compaction. Mutagenesis. 2013;28(5):569–576. doi: 10.1093/mutage/get034
  65. VassarStats: Website for statistical computation [Internet]. Available from: http://vassarstats.net. Accessed: March 8, 2022.
  66. Statistics Kingdom [Internet]. Available from: http://www.statskingdom.com. Accessed: March 8, 2022.
  67. BoxPlot online [Internet]. Available from: http://www.physics.csbsju.edu/stats/bulk.stats.n.plot_NGROUP_form.html. Accessed: Dec 15, 2020.
  68. Navendu Vasavada. Online web statistical calculators [Internet]. Available from: http://astatsa.com. Accessed: Apr 05, 2022.
  69. MNK i regressionnyi analiz Onlain [Internet]. Matematicheskii forum Math Help Planet. Available from: http://mathhelpplanet.com/static.php?p=onlayn-mnk-i-regressionniy-analiz. Accessed: Apr 05, 2022. (In Russ.)
  70. Uravnenie nelineinoi regressii onlain [Internet]. OOO Novyi semestr. Available from: https://math.semestr.ru/corel/noncorel.php. Accessed: Apr 05, 2022. (In Russ.)
  71. Wessa P. Free Statistics Software. Office for Research Development and Education. version 1.2.1 [Internet]. Available from: https://www.wessa.net. Accessed: Apr 05, 2022.
  72. Wessa P. Multivariate Correlation Matrix (v1.0.11) in Free Statistics Software (v1.2.1), Office for Research Development and Education. 2016 [Internet]. Available from: https://www.wessa.net/rwasp_pairs.wasp. Accessed: Apr 05, 2022.
  73. Polynomial Regression Calculator [Internet]. Stats Blue. Available from: https://stats.blue/Stats_Suite/polynomial_regression_calculator.html. Accessed: Oct 13, 2022.
  74. Yanaihara A, Toma Y, Saito H, et al. Cell proliferation effect of lactoferrin in human endometrial stroma cells. Mol Hum Reprod. 2000;6(5):469–473. doi: 10.1093/molehr/6.5.469
  75. Lorget F, Clough J, Oliveira M, et al. Lactoferrin reduces in vitro osteoclast differentiation and resorbing activity. Biochem Biophys Res Commun. 2002;296(2):261–266. doi: 10.1016/s0006-291x(02)00849-5
  76. Buccigrossi V, de Marco G, Bruzzese E, et al. Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation. Pediatr Res. 2007;61(4):410–414. doi: 10.1203/pdr.0b013e3180332c8d
  77. Jiang R, Lopez V, Kelleher SL, et al. Apo- and holo-lactoferrin are both internalized by lactoferrin receptor via clathrin-mediated endocytosis but differentially affect ERK-signaling and cell proliferation in Caco-2 cells. J Cell Physiol. 2011;226(11):3022–3031. doi: 10.1002/jcp.22650
  78. Babushkina NA, Ostrovskaya LA, Rykova VA, et al. Modelirovaniye effektivnosti deystviya protivoopukholevykh preparatov v sverkhmalykh dozakh dlya optimizatsii rezhimov vvedeniya. Control Sciences. 2005;4:47–54. (In Russ.)
  79. Generalenko NYu, Kryukova LYu, Pushkin IA. Effects of small and micro doses biologically active substances. Nauchnyye i obrazovatel’nyye problemy grazhdanskoy zashchity. 2010;3:6–7. (In Russ.)
  80. Bellavite P, Ortolani R, Pontarollo F, et al. Immunology and homeopathy. 5. The rationale of the ‘Simile’. Evid Based Complement Alternat Med. 2007;4(2):149–163. doi: 10.1093/ecam/nel117
  81. Utsugi T, Schroit AJ, Connor J, et al. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 1991;51(11):3062–3066.
  82. Damiens E, El Yazidi I, Mazurier J, et al. Role of heparan sulphate proteoglycans in the regulation of human lactoferrin binding and activity in the MDA-MB-231 breast cancer cell line. Eur J Cell Biol. 1998;77(4):344–351. doi: 10.1016/S0171-9335(98)80093-9
  83. Antequera F. Structure, function and evolution of CpG island promoters. Cell Mol Life Sci. 2003;60(8):1647–1658. doi: 10.1007/s00018-003-3088-6
  84. Lakshminarasimhan R, Liang G. The role of DNA methylation in cancer. Adv Exp Med Biol. 2016;945:151–172. doi: 10.1007/978-3-319-43624-1_7
  85. Ball MP, Li JB, Gao Y, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol. 2009;27(4):361–368. doi: 10.1038/nbt.1533
  86. Fazzari MJ, Greally JM. Epigenomics: beyond CpG islands. Nat Rev Genet. 2004;5(6):446–455. doi: 10.1038/nrg1349
  87. Kulis M, Queirós AC, Beekman R, et al. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta. 2013;1829(11):1161–1174. doi: 10.1016/j.bbagrm.2013.08.001
  88. Lou S, Lee HM, Qin H, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014;15(7):408. doi: 10.1186/s13059-014-0408-0
  89. Nagarajan RP, Zhang B, Bell RJ, et al. Recurrent epimutations activate gene body promoters in primary glioblastoma. Genome Res. 2014;24(5):761–774. doi: 10.1101/gr.164707.113
  90. Gurova KV. Chromatin stability as a target for cancer treatment. Bioessays. 2019;41(1):e1800141. doi: 10.1002/bies.201800141
  91. Furmanski P, Li ZP, Fortuna MB, et al. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J Exp Med. 1989;170(2):415–429. doi: 10.1084/jem.170.2.415
  92. Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000;157(2):411–421. doi: 10.1016/s0002-9440(10)64554-3
  93. Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59(22):5830–5835.
  94. Kostevich VA, Sokolov AV, Kozlov SO, et al. Functional link between ferroxidase activity of ceruloplasmin and protective effect of apo-lactoferrin: studying rats kept on a silver chloride diet. Biometals. 2016;29(4):691–704. doi: 10.1007/s10534-016-9944-2
  95. Ibuki M, Shoda C, Miwa Y, et al. Lactoferrin has a therapeutic effect. Front Pharmacol. 2020;11:174. doi: 10.3389/fphar.2020.00174

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Viability of IMR-32 cells after 72 hours of exposure to recombinant human lactoferrin. Significant differences with control were found for all studied doses of apo-rhLF (p < 0.001)

Download (91KB)
3. Fig. 2. Changes of the genome-wide DNA methylation level (a–c) and chromatin compaction degree (d) in IMR-32 cells after 72 hours of apo-rhLF exposure. * p < 0.001, ** p = 0.004 — significance of differences in comparison with the control

Download (282KB)

Copyright (c) 2023 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».