Role of pancreatic amyloidosis in pathogenesis of type 2 diabetes mellitus
- Authors: Gudkova A.Y.1, Antimonova O.I.2, Shavlovsky M.M.1,2
-
Affiliations:
- Pavlov First Saint Petersburg State Medical University
- Institute of Experimental Medicine
- Issue: Vol 19, No 2 (2019)
- Pages: 27-36
- Section: Analytical reviews
- URL: https://journal-vniispk.ru/MAJ/article/view/16132
- DOI: https://doi.org/10.17816/MAJ19227-36
- ID: 16132
Cite item
Full Text
Abstract
The occurrence of type 2 diabetes mellitus (T2DM) in developed countries is currently becoming epidemic primarily due to the changes in quality of life. This disease typically makes progress for a long time, and its clinical pattern is mostly related to various micro- and macrovascular complications. In addition to said complications the pancreas itself often undergoes damage associated with amyloid formation in islets of Langerhans which results in a toxic effect on the hormone-producing islet cells. Ultimately, hormone overproduction in T2DM shifts to hormone deficiency. The crucial causative factor of the development of pancreatic amyloidosis in T2DM is а short peptide hormone, amylin (IAPP), which is cosecreted with insulin and considered to be a kind of insulin antagonist. The present review reports structure, functions and amyloidogenic properties of human IAPP. The basic concepts of molecular and cellular aspects concerning pathogenesis of pancreatic amyloidosis have been provided. Patterns of the development of pancreatic amyloid lesions and possible approaches for early diagnosis and treatment of this significant complication of T2DM have been discussed.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Alexandra Ya. Gudkova
Pavlov First Saint Petersburg State Medical University
Email: alexagood-1954@mail.ru
ORCID iD: 0000-0003-0156-8821
MD, PhD, Professor of the Department of Faculty Therapy with the Clinic; Head of the Laboratory of Cardiomyopathies of Heart and Vascular Research Institute
Russian Federation, Saint PetersburgOlga I. Antimonova
Institute of Experimental Medicine
Author for correspondence.
Email: oa0584@mail.ru
SPIN-code: 9214-2677
Junior Researcher of the Department of Molecular Genetics
Russian Federation, Saint PetersburgMikhail M. Shavlovsky
Pavlov First Saint Petersburg State Medical University; Institute of Experimental Medicine
Email: mmsch@rambler.ru
ORCID iD: 0000-0002-2119-476X
SPIN-code: 5009-9383
Leading Researcher of the Laboratory of Cardiomyopathies of Heart and Vascular Research Institute; MD, PhD, Professor, Head of the Laboratory of Human Molecular Genetics of the Department of Molecular Genetics
Russian Federation, Saint PetersburgReferences
- WHO; 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes.
- Opie EL. On the relation of chronic interstitial pancreatitis to the islands of Langerhans and to diabetes mellitus. J Exp Med. 1901;5(4):397-428. https://doi.org/10.1084/jem.5.4.397.
- Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75(1):333-366. https://doi.org/10.1146/annurev.biochem.75.101304. 123901.
- Шавловский М.М. Молекулярные и генетические основы этиопатогенеза амилоидозов // Медицинский академический журнал. – 2010. – Т. 10. – № 4. – С. 63–81. [Shavlovsky MM. Ethiology and pathogenesis of amyloidoses: the molecular and genetic basis. Meditsinskii akademicheskii zhurnal. 2010;10(4):63-81. (In Russ.)]
- Cooper GJ, Leighton B, Dimitriadis GD, et al. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc Natl Acad Sci U S A. 1988;85(20):7763-7766. https://doi.org/10.1073/pnas.85.20.7763.
- Cooper GJ, Day AJ, Willis AC, et al. Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim Biophys Acta. 1989;1014(3):247-258. https://doi.org/10.1016/0167-4889(89)90220-6.
- Mukherjee A, Morales-Scheihing D, Butler PC, Soto C. Type 2 diabetes as a protein misfolding disease. Trends Mol Med. 2015;27(7):439-449. https://doi.org/10.1016/j.molmed.2015.04.005.
- Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid. 2016;23(4):209-213. https://doi.org/10.1080/13506129.2016.1257986.
- Westermark P, Wernstedt C, Wilander E, et al. Amyloid fibrils in humane insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islets cells. Proc Natl Acad Sci USA. 1987;84(11):3881-3885. https://doi.org/10.1073/pnas.84.11.3881.
- Westermark P. Amyloid in the islets of Langerhans: thoughts and some historical aspects. Ups J Med Sci. 2011;116(2):81-89. https://doi.org/10.3109/03009734.2011.573884.
- Cooper GJ, Willis AC, Clark A, et al. Purification and characterization of a peptide from amyloid-rich pancreas of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987;84(23):8628-8632. https://doi.org/10.1073/pnas.84.23.8628.
- Sanke T, Bell GI, Sample C, et al. An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J Biol Chem. 1988;263(33):17243-17246.
- Martin C. The physiology of amylin and insulin: maintaining the balance between glucose secretion and glucose uptake. Diabetes Educat. 2006;32(Suppl 3):101S-104S. https://doi.org/10.1177/0145721706288237.
- Pillay K, Govender P. Amylin uncovered: a review on the polypeptide responsible for type 2 diabetes. Biomed Res Int. 2013;2013:826706. https://doi.org/org/10.1155/ 2013/826706.
- Li Y, Hatmal MM, Langen R, Haworth IS. Idealized models of protofilaments of human islet amyloid polypeptide. J Chem Inf Model. 2012;52(11):2983-2991. https://doi.org/10.1021/ci300300e.
- Bhowmick DC, Singh S, Trikha S, Jeremic AM. The molecular physiopathogenesis of islet amyloidosis. Handb Exp Pharmacol. 2018;245:271-312. https://doi.org/10.1007/ 164_2017_62.
- Höppener JW, Jacobs HM, Wierup N, et al. Human islet amyloid polypeptide transgenic mice: in vivo and ex vivo models for the role of hIAPP in type 2 diabetes mellitus. Exp Diabetes Res. 2008;2008:697035. https://doi.org/10.1155/2008/697035.
- Qiu WQ. Amylin and its G-protein-coupled receptor: a probable pathological process and drug target for Alzheimer’s disease. Neuroscience. 2017;356:44-51. https://doi.org/10.1016/j.neuroscience.2017.05.024.
- Cao P, Marek P, Noor H, et al. Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett. 2013;587(8):1106-1118. https://doi.org/10.1016/j.febslet.2013.01.046.
- Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett. 2013;587(8):1119-1127. https://doi.org/10.1016/j.febslet.2013.01.017.
- Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease: a summary of progress over the last decade. Annu Rev Biochem. 2017;86:27-68. https://doi.org/10.1146/annurev-biochem-061516-045115.
- Antimonova OI, Lebedev DV, Zabrodskaya YA, et al. Changing times: fluorescence-lifetime analysis of amyloidogenic SF-IAPP fusion protein. J Struct Biol. 2019;205(1):78-83. https://doi.org/10.1016/j.jsb.2018.11.006.
- Fox A, Snollaerts T, Casanova C, et al. Selection for non-amyloidogenic mutants of islet amyloid polypeptide (IAPP) identifies an extended region for amyloidogenicity. Biochem. 2010;49(36):7783-7789. https://doi.org/10.1021/bi100337p.
- Abedini A, Meng F, Raleigh DP. A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent firillization inhibitor. J Am Chem Soc. 2007;129(37):11300-11301. https://doi.org/10.1021/ja072157y.
- Scrocchi LA, Chen Y, Waschuk S, et al. Design of peptide-based inhibitors of human islet amyloid potypeptide fibrillogenesis. J Mol Biol. 2002;318(3):697-706. https://doi.org/10.1016/S0022-2836(02)00164-X.
- Scrocchi LA, Ha K, Chen Y, et al. Identification of minimal peptide sequences in the (8-20) domain of human islet amyloid polypeptide involved in fibrillogenesis. J Struct Biol. 2003;141(3):218-227. https://doi.org/10.1016/S1047-8477(02)00630-5.
- Dunkelberger EB, Buchanan LE, Marek P, et al. Deamidation accelerates amyloid formation and alters amylin fiber structure. J Am Chem Soc. 2012;134(30):12658-12667. https://doi.org/10.1021/ja3039486.
- Ankarcona M, Winblad B, Monteiro C, et al. Current and future treatment of amyloid diseases. J Intern Med. 2016;280(2):177-202. https://doi.org/10.1111/joim.12506.
- Krampert M, Bernhagen J, Schmucker J, et al. Amyloidogenicity of recombinant human pro-islet amyloid polypeptide (ProIAPP). Chem Biol. 2000;7(11):855-871. https://doi.org/10.1016/s1074-5521(00)00034-x.
- Akter R, Cao P, Noor H, et al. Islet amyloid polypeptide: structure, function, and pathophysiology. J Diabetes Res. 2016;2016:2798269. https://doi.org/10.1155/2016/ 2798269.
- Hayden MR, Tyagi SC, Kerklo MM, Nicolls MR. Type 2 diabetes mellitus as a conformational disease. J Pancreas. 2005;6(4):287-302.
- Haataja L, Gurlo T, Huang CJ, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev. 2008;29(3):303-316. https://doi.org/10.1210/er.2007-0037.
- Khemtémourian L, Killian JA, Höppener JW, Engel MF. Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp Diabetes Res. 2008;2008:421287. https://doi.org/10.1155/2008/421287.
- Konrkowska B, Aitken JF, Kistler J, et al. The aggregation potential of human amylin determines its cytotoxicity towards islet β-cells. FEBS J. 2006;273(15):3614-3624. https://doi.org/10.1111/j.1742-4658.2006.05367.x.
- Kapurniotu A. Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. Biopolymers. 2001;60(6):438-459. https://doi.org/10.1002/1097-0282(2001)60:6<438::AID-BIP10182>3.0.CO;2-A.
- Lim YA, Rhein V, Baysang G, et al. Aβ and human amylin share a common toxicity pathway via mitochondria dysfunction. Proteomics. 2010;10(8):1621-1633. https://doi.org/10.1002/pmic.200900651.
- Engel MF. Membrane permeabilization by islet amyloid polypeptide. Chem Phys Lipids. 2009;160(1):1-10. https://doi.org/10.1016/j.chemphyslip.2009.03.008.
- Ma Z, Westermark GT, Sakagashira S, et al. Enhanced in vitro production of amyloid-like fibrils from mutant (S20G) islet amyloid polypeptide. Amyloid. 2001;8(4):242-249. https://doi.org/10.3109/13506120108993820.
- Sakagashira S, Hiddinga HJ, Tateishi K, et al. S20G mutant amylin exhibits increased in vitro amyloidogenicity and increased intracellular cytotoxicity compared to wild-type amylin. Am J Pathol. 2000;157(6):2101-2109. https://doi.org/10.1016/S0002-9440(10)64848-1.
- Seino S. S20G mutation of the amylin gene is associated with type II diabetes in Japanese. Diabetologia. 2001;44(7):906-909. https://doi.org/10.1007/s001250100531.
- Lee SC, Hashim Y, Li JK, et al. The islet amyloid polypeptide (amylin) gene S20G mutation in Chinese subjects: evidence for associations with type 2 diabetes and cholesterol levels. Clin Endocrinol. 2001;54(4):541-546. https://doi.org/10.1046/j.1365-2265.2001.01244.x.
- Esapa C, Moffitt JH, Novials A, et al. Islet amyloid polypeptide gene promoter polymorphisms are not associated with type 2 diabetes or with the severity of islet amyloidosis. Biochim Biophys Acta. 2005;1740(1):74-78. https://doi.org//10.1016/j.bbadis.2005.02.001.
- Gong W, Liu ZH, Zeng CH, et al. Amylin deposition in the kidney of patients with diabetic nephropathy. Kidney Int. 2007;72(2):213-218. https://doi.org/10.1038/sj.ki.5002305.
- Jackson K, Barisone GA, Diaz E, et al. Amylin deposition in the brain: A second amyloid in Alzheimer disease? Ann Neurol. 2013;74(4):517-526. https://doi.org/10.1002/ana.23956.
- Despa S, Margulies KB, Chen L, et al. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats. Circ Res. 2012;110(4):598-608. https://doi.org/10.1161/CIRCRESAHA.111.258285.
- Kruger DF, Gatcomb PM, Owen SK. Clinical implications of amylin and amylin deficiency. Diabetes Educat. 1999;25(3):389-397. https://doi.org/10.1177/014572179902500310.
- Thompson RG, Pearson L, Schoenfeld SL, Kolterman OG. Pramlintide, a synthetic analog of human amylin, improves the metabolic profile of patients with type 2 diabetes using insulin. Diabetes Care. 1998;21(6):987-993. https://doi.org/10.2337/diacare.21.6.987.
- Weyer C, Maggs DG, Ruggles J, et al. The human amylin analog, pramlintide, reduces body weight in insulin-treated patients with type 2 diabetes. Diabetologia. 2003;46(Issue 2 Supplement):A295. Available from: https://link.springer.com/content/pdf/10.1007%2Fs00125-003-1190-9.pdf.
- Ryan GJ, Jobe LJ, Martin R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin Therapeut. 2005;27(10):1500-1512. https://doi.org/10.1016/j.clinthera. 2005.10.009.
- Ryan GJ, Briscoe TA, Jobe LJ, Martin R. Review of pramlintide as adjunctive therapy in treatment of type 1 and type 2 diabetes. Drug Des Dev Ther. 2008;2:203-214. https://doi.org/10.2147/DDDT.S3225.
- Ahmad E, Ahmad A, Singh S, et al. A mechanistic approach for islet amyloid polypeptide aggregation to develop anti-amyloidogenic agents for type-2 diabetes. Biochimie. 2011;93(5):793-805. https://doi.org/10.1016/j.biochi.2010.12.012.
- Aitken JF, Loomes KM, Konarkowska B, Cooper GJ. Suppression by polycyclic compounds of the conversion of human amylin into insoluble amyloid. Biochem J. 2003;374(3):779-784. https://doi.org/10.1042/BJ20030422.
- Radovan D, Opitz N, Winter R. Fluorescence microscopy studies on islet amyloid polypeptide fibrillation at heterogeneous and cellular interfaces and its inhibition by resveratrol. FEBS Lett. 2009;583(9):1439-1445. https://doi.org/10.1016/j.febslet.2009.03.059.
Supplementary files
