Analysis of concentration and activity of proteins involved in iron metabolism in rats with streptozotocin-induced hyperglycemia

Cover Page

Cite item

Full Text

Abstract

Objective. We aimed to analyze the alterations of concentration and activity of iron metabolism proteins in samples obtained from rats with hyperglycemia induced by streptozotocin (STZ).

Materials and methods. Concentration and activity of ceruloplasmin (Cp) and transferrin (Tf), concentration of glucose, fructosamine, hemoglobin, ferritin (Ft), and iron were measured in blood samples obtained from rats after injection of STZ or saline (control). To develop in-house ELISA, highly purified preparations of Cp, Tf, and Ft, as well as specific antibodies against these proteins, were obtained.

Results. The hyperglycemia in rats after STZ injection was confirmed by increase in glucose and fructosamine serum concentrations. Increase in Cp concentration and decrease in specific ferroxidase activity of Cp, concentration of Tf and Ft were observed in hyperglycemic rats. However, the absence of changes in iron concentration and total iron binding capacity of serum is indicative of compensatory response.

Conclusion. STZ-induced hyperglycemia in rats was characterized by alteration of activity and concentration of iron metabolism proteins, however, this alteration was negated by homeostatic response. The alterations of Cp and Tf concentrations observed in this study are similar to those in acute phase of inflammation.

About the authors

Irina V. Voynova

Institute of Experimental Medicine

Email: iravoynova@mail.ru

PhD student, Research fellow of the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Valeria A. Kostevich

Institute of Experimental Medicine

Email: hfa-2005@yandex.ru
ORCID iD: 0000-0002-1405-1322
SPIN-code: 2726-2921

PhD (Biology), Senior Researcher of the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Anna Yu. Elizarova

Institute of Experimental Medicine

Email: anechka_v@list.ru
SPIN-code: 3059-4381

PhD student, Research fellow of the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Marina N. Karpenko

Institute of Experimental Medicine

Email: mnkarpenko@mail.ru
ORCID iD: 0000-0002-1082-0059
SPIN-code: 6098-2715

PhD (Biology), Senior Researcher of The Pavlov Department of Physiology

Russian Federation, Saint Petersburg

Alexey V. Sokolov

Institute of Experimental Medicine; Saint Petersburg State University

Author for correspondence.
Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395
Scopus Author ID: 35263234800

Doctor of Biological Sciences, Head of the Laboratory of Biochemical Genetics of the Department of Molecular Genetics; Professor of Chair of Fundamental Problems of Medicine and Medical Technology 

Russian Federation, Saint Petersburg

References

  1. Lankin VZ, Tikhaze AK, Kapel’ko VI, et al. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biokhimiia. 2007;72(10):1081-1090. https://doi.org/10.1134/s0006297907100069.
  2. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11(8):215-225. https://doi.org/10.1177/ 1753944717711379.
  3. Pandey R, Dingari NC, Spegazzini N, et al. Emerging trends in optical sensing of glycemic markers for diabetes monitoring. Trends Analyt Chem. 2015;64:100-108. https://doi.org/10.1016/j.trac.2014.09.005.
  4. Thornalley PJ. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand). 1998;44(7):1013-1023.
  5. Horn RA, Friesen EJ, Stephens RL, et al. Electron spin resonance studies on properties of ceruloplasmin and transferrin in blood from normal human subjects and cancer patients. Cancer. 1979;43(6):2392-2398. https://doi.org/10.1002/1097-0142(197906)43:6<2392::aid-cncr2820430633>3.0.co;2-g.
  6. Osaki S, Johnson DA, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem. 1966;241(12):2746-2751.
  7. Sokolov AV, Voynova IV, Kostevich VA, et al. Comparison of interaction between ceruloplasmin and lactoferrin/transferrin: to bind or not to bind. Biochemistry (Mosc). 2017;82(9):1073-1078. https://doi.org/10.1134/S0006297917090115.
  8. Squitti R, Mendez AJ, Simonelli I, Ricordi C. Diabetes and Alzheimer’s disease: can elevated free copper predict the risk of the disease? J Alzheimers Dis. 2017;56(3):1055-1064. https://doi.org/10.3233/JAD-161033.
  9. Golizeh M, Lee K, Ilchenko S, et al. Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radic Biol Med. 2017;113:461-469. https://doi.org/10.1016/j.freeradbiomed.2017.10.373.
  10. Silva AMN, Coimbra JTS, Castro MM, et al. Determining the glycation site specificity of human holo-transferrin. J Inorg Biochem. 2018;186:95-102. https://doi.org/10.1016/j.jinorgbio. 2018.05.016.
  11. Войнова И.В., Костевич В.А., Елизарова А.Ю., и др. Зависимость удельной активности участников обмена железа от степени компенсации сахарного диабета 2-го типа // Медицинский академический журнал. – 2019. – Т. 19. – № 2. – С. 37–42. [Voynova IV, Kostevich VA, Elizarova AY, et al. The specific activity of proteins involved in iron metabolism depends on compensation of type 2 diabetes mellitus. Medical academic journal. 2019;19(2):37-42. (In Russ.)]. https://doi.org/10.17816/maj19237-42.
  12. Misra G, Bhatter SK, Kumar A, et al. Iron profile and glycaemic control in patients with type 2 diabetes mellitus. Med Sci (Basel). 2016;4(4). https://doi.org/10.3390/medsci4040022.
  13. Akbarzadeh A, Norouzian D, Mehrabi MR, et al. Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem. 2007;22(2):60-64. https://doi.org/10.1007/BF02913315.
  14. Fields M, Ferretti RJ, Smith JC, Jr., Reiser S. Effect of copper deficiency on metabolism and mortality in rats fed sucrose or starch diets. J Nutr. 1983;113(7):1335-1345. https://doi.org/10.1093/jn/113.7.1335.
  15. Miller LL, Treat DE, Fridd B, Wemett D. Effects of streptozotocin diabetes in the rat on blood levels of ten specific plasma proteins and on their net biosynthesis by the isolated perfused liver. Hepatology. 1990;11(4):635-645. https://doi.org/10.1002/hep.1840110417.
  16. Oster MH, Llobet JM, Domingo JL, et al. Vanadium treatment of diabetic Sprague-Dawley rats results in tissue vanadium accumulation and pro-oxidant effects. Toxicology. 1993;83(1-3):115-130. https://doi.org/10.1016/0300-483x(93)90096-b.
  17. Asayama K, Nakane T, Uchida N, et al. Serum antioxidant status in streptozotocin-induced diabetic rat. Horm Metab Res. 1994;26(7):313-315. https://doi.org/10.1055/ s-2007-1001693.
  18. Anwar MM, Meki A-RMA. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A Mol Integr Physiol. 2003;135(4):539-547. https://doi.org/10.1016/s1095-6433 (03)00114-4.
  19. Uriu-Adams JY, Rucker RB, Commisso JF, Keen CL. Diabetes and dietary copper alter 67Cu metabolism and oxidant defense in the rat. J Nutr Biochem. 2005;16(5):312-320. https://doi.org/10.1016/j.jnutbio.2005.01.007.
  20. Kim SW, Hwang HJ, Cho EJ, et al. Time-dependent plasma protein changes in streptozotocin-induced diabetic rats before and after fungal polysaccharide treatments. J Proteome Res. 2006;5(11):2966-2976. https://doi.org/10.1021/pr0602601.
  21. Venkateswaran S, Pari L, Saravanan G. Effect of Phaseolus vulgaris on circulatory antioxidants and lipids in rats with streptozotocin-induced diabetes. J Med Food. 2002;5(2):97-103. https://doi.org/10.1089/109662002760178186.
  22. Kamalakkannan N, Prince PSM. Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. J Ethnopharmacol. 2003;87(2-3):207-210. https://doi.org/10.1016/s0378-8741(03)00148-x.
  23. Prakasam A, Sethupathy S, Pugalendi KV. Effect of Casearia esculenta root extract on blood glucose and plasma antioxidant status in streptozotocin diabetic rats. Pol J Pharmacol. 2003;55(1):43-49.
  24. Venkateswaran S, Pari L. Effect of Coccinia indica leaf extract on plasma antioxidants in streptozotocin-induced experimental diabetes in rats. Phytother Res. 2003;17(6):605-608. https://doi.org/10.1002/ptr.1195.
  25. Babu PS, Stanely Mainzen Prince P. Antihyperglycaemic and antioxidant effect of hyponidd, an ayurvedic herbomineral formulation in streptozotocin-induced diabetic rats. J Pharm Pharmacol. 2004;56(11):1435-1442. https://doi.org/10.1211/0022357044607.
  26. Ravi K, Ramachandran B, Subramanian S. Effect of Eugenia Jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes in rats. Life Sci. 2004;75(22):2717-2731. https://doi.org/10.1016/j.lfs.2004. 08.005.
  27. Korkach Iu P, Dudchenko NO, Kotsiuruba AV, et al. Role of non-haem iron in protecting effect of ecdysterone on development of streptozocin-induced hyperglycaemia in rats. Ukr Biokhim Zh. 2008;80(1):46-51.
  28. Mascaro MB, Franca CM, Esquerdo KF, et al. Effects of dietary supplementation with agaricus sylvaticus schaeffer on glycemia and cholesterol after streptozotocin-induced diabetes in rats. Evid Based Complement Alternat Med. 2014;2014:107629. https://doi.org/10.1155/2014/107629.
  29. Воронина О.В., Монахов Н.К. Индукция образования под влиянием эстрадиола полирибосомного комплекса, синтезирующего церулоплазмин у крыс // Биохимия. – 1980. – Т. 45. – № 6. – С. 1010–1016. [Voronina OV, Monakhov NK. Induktsiya obrazovaniya pod vliyaniem estradiola poliribosomnogo kompleksa, sinteziruyushchego tseruloplazmin u krys. Biokhimiia. 1980;45(6):1010-1016. (In Russ.)]
  30. Gitlin JD. Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem. 1988;263(13):6281-6287.
  31. Yang S, Hua Y, Nakamura T, et al. Up-regulation of brain ceruloplasmin in thrombin preconditioning. Acta Neurochir Suppl. 2006;96:203-206. https://doi.org/10.1007/3-211-30714-1_44.
  32. Martin F, Linden T, Katschinski DM, et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood. 2005;105(12):4613-4619. https://doi.org/10.1182/blood-2004-10-3980.
  33. Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem. 2000;275(28):21048-21054. https://doi.org/10.1074/jbc.M000636200.
  34. Seshadri V, Fox PL, Mukhopadhyay CK. Dual role of insulin in transcriptional regulation of the acute phase reactant ceruloplasmin. J Biol Chem. 2002;277(31):27903-27911. https://doi.org/10.1074/jbc.M203610200.
  35. Sokolov AV, Kostevich VA, Romanico DN, et al. Two-stage method for purification of ceruloplasmin based on its interaction with neomycin. Biokhimiia. 2012;77(6):631-638. https://doi.org/10.1134/S0006297912060107.
  36. Sokolov AV, Acquasaliente L, Kostevich VA, et al. Thrombin inhibits the anti-myeloperoxidase and ferroxidase functions of ceruloplasmin: relevance in rheumatoid arthritis. Free Radic Biol Med. 2015;86:279-294. https://doi.org/10.1016/ j.freeradbiomed.2015.05.016.
  37. Samygina VR, Sokolov AV, Bourenkov G, et al. Rat ceruloplasmin: a new labile copper binding site and zinc/copper mosaic. Metallomics. 2017;9(12):1828-1838. https://doi.org/10.1039/c7mt00157f.
  38. Kostevich VA, Sokolov AV, Kozlov SO, et al. Functional link between ferroxidase activity of ceruloplasmin and protective effect of apo-lactoferrin: studying rats kept on a silver chloride diet. Biometals. 2016;29(4):691-704. https://doi.org/10.1007/s10534-016-9944-2.
  39. Thomas CE, Morehouse LA, Aust SD. Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem. 1985;260(6):3275-3280.
  40. May ME, Fish WW. The UV and visible spectral properties of ferritin. Arch Biochem Biophys. 1978;190(2):720-725. https://doi.org/10.1016/0003-9861(78)90332-6.
  41. Davis BJ. Disc Electrophoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci. 1964;121:404-427. https://doi.org/10.1111/j.1749-6632. 1964.tb14213.x.
  42. Sokolov AV, Zakharova ET, Shavlovskii MM, Vasil’ev VB. Isolation of stable human ceruloplasmin and its interaction with salmon protamine. Russian Journal of Bioorganic Chemistry. 2005;31(3):269-279. https://doi.org/10.1007/s11171-005-0033-5.
  43. Tijssen P, Kurstak E. Highly efficient and simple methods for the preparation of peroxidase and active peroxidase-antibody conjugates for enzyme immunoassays. Anal Biochem. 1984;136(2):451-457. https://doi.org/10.1016/0003-2697(84)90243-4.
  44. Gaastra W. Enzyme-linked immunosorbant assay (ELISA). Methods Mol Biol. 1984;1:349-355. https://doi.org/10.1385/ 0-89603-062-8:349.
  45. Erel O. Automated measurement of serum ferroxidase activity. Clin Chem. 1998;44(11):2313-2319.
  46. Varfolomeeva EY, Semenova EV, Sokolov AV, et al. Ceruloplasmin decreases respiratory burst reaction during pregnancy. Free Radic Res. 2016;50(8):909-919. https://doi.org/10.1080/10715762.2016.1197395.
  47. Yamashita S, Abe A, Noma A. Sensitive, direct procedures for simultaneous determinations of iron and copper in serum, with use of 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol (nitro-PAPS) as ligand. Clin Chem. 1992;38(7):1373-1375.
  48. Van Kampen EJ, Zijlstra WG. Determination of hemoglobin and its derivatives. Adv Clin Chem. 1965;8:141-187. https://doi.org/10.1016/s0065-2423(08)60414-x.
  49. Фельдкорен Б.Н., Осипова Е.Н., Коцегуб Г.П., Рогозкин В.А. Исследование параметров метода гликозилированных белков сыворотки крови // Лабораторное дело. – 1988. – № 5. – С. 56–59. [Fel’dkoren BN, Osipova EN, Kotsegub GP, Rogozkin VA. Issledovanie parametrov metoda glikozilirovannykh belkov syvorotki krovi. Lab Delo. 1988;(5):56-59 (In Russ.)]
  50. Stocker P, Cassien M, Vidal N, et al. A fluorescent homogeneous assay for myeloperoxidase measurement in biological samples. A positive correlation between myeloperoxidase-generated HOCl level and oxidative status in STZ-diabetic rats. Talanta. 2017;170:119-127. https://doi.org/10.1016/ j.talanta.2017.03.102.
  51. Yoshida K, Furihata K, Takeda S, et al. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet. 1995;9(3):267-272. https://doi.org/10.1038/ng0395-267.
  52. Zheng J, Chen M, Liu G, et al. Ablation of hephaestin and ceruloplasmin results in iron accumulation in adipocytes and type 2 diabetes. FEBS Lett. 2018;592(3):394-401. https://doi.org/10.1002/1873-3468.12978.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Concentration of hemoglobin (a), glucose (b), and fructosamine (c) in blood of control group rats (PBS) and STZ-injected rats (STZ)

Download (119KB)
3. Fig. 2. Ferroxidase activity (FerOx) (a), para-phenylenediamine-oxidase activity (p-PD) (b), concentration of ceruloplasmin (c), specific FerOx (FerOx/Cp) (d), and specific p-PD of ceruloplasmin (p-PD/Cp) (e) in control group rats (PBS) and STZ-injected rats (STZ)

Download (192KB)
4. Fig. 3. Concentration of transferrin (a), ferritin (b), iron (c), total iron-binding capacity of serum (TIBC) (d), and specific activity of transferrin (TIBC/Tf) (e) in control group rats (PBS) and STZ-injected rats (STZ)

Download (186KB)

Copyright (c) 2020 Voynova I.V., Kostevich V.A., Elizarova A.Y., Karpenko M.N., Sokolov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».