Neuronal protein GAP-43 in early mouse embryos
- Authors: Zakharova F.M.1,2, Yagovkina N.A.2, Zakharov V.V.3
-
Affiliations:
- Institute of Experimental Medicine
- Saint Petersburg State University
- Institute of Macromolecular Compounds of the Russian Academy of Sciences
- Issue: Vol 24, No 3 (2024)
- Pages: 78-86
- Section: Original research
- URL: https://journal-vniispk.ru/MAJ/article/view/277935
- DOI: https://doi.org/10.17816/MAJ631471
- ID: 277935
Cite item
Abstract
BACKGROUND: GAP-43 (growth-associated protein 43) is a specific neuronal protein of vertebrates, which is predominantly localized at the plasma membrane of axon terminals. GAP-43 plays an important role in axon growth cone guidance, neuroregeneration and synaptic plasticity. We have recently shown that GAP-43 is also present in mouse oocytes and zygotes, where the protein exhibits cytoplasmic localization, which presumably results from peculiar GAP-43 expression and modifications in these cells.
AIM: The aim of the research was to study GAP-43 localization in early (preimplantation) mouse embryos, from zygote to blastocyst stage.
MATERIALS AND METHODS: C57BL/CBA F1 hybrid mice were used in the work. Oocytes and zygotes were obtained by hormonal stimulation of female mice. For immunocytochemical staining of oocytes and early embryos, primary polyclonal antibodies to GAP-43 and Ser41-phosphorylated GAP-43 were used.
RESULTS: The intracellular distribution of GAP-43 protein in mouse oocytes (at the metaphase II stage) and early embryos — from the unicellular stage (zygote) to the blastocyst stage — was studied by immunocytochemical assay. In oocytes, there is a uniform distribution of protein throughout the cytoplasm with the highest intensity of staining in the meiotic spindle region. In early embryos, GAP-43 is present in the nuclei and cytoplasm. The relative amount of GAP-43 in the nucleus and cytoplasm varies depending on the stage of embryo development and the cell cycle phase of blastomeres. The phosphorylation of GAP-43 at Ser41 residue, which is characteristic of neurons, is also observed in the nuclei and cytoplasm of early embryo cells. At blastocyst stage, the high expression of GAP-43 is preserved only in the pluripotent cells of the inner cell mass.
CONCLUSIONS: For the first time, we have demonstrated the presence of GAP-43 protein in early mouse embryos. The significant difference between GAP-43 localization in neurons (plasma membrane) and early embryo cells (cytoplasm and nucleus) was revealed. The results suggest a specific role of GAP-43 in toti- and pluripotent cells of early embryos.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Faina M. Zakharova
Institute of Experimental Medicine; Saint Petersburg State University
Author for correspondence.
Email: fzakharova@mail.ru
ORCID iD: 0000-0002-9558-3979
SPIN-code: 9699-5744
Cand. Sci. (Biology), Senior Research Associate at the Department of Molecular Genetics, Senior Lecturer at the Department of Embryology
Russian Federation, Saint Petersburg; Saint Petersburg
Nadezhda A. Yagovkina
Saint Petersburg State University
Email: st110082@student.spbu.ru
ORCID iD: 0009-0002-3090-9621
2nd year graduate student of Faculty of Biology, Departments of Embryology
Russian Federation, Saint PetersburgVladislav V. Zakharov
Institute of Macromolecular Compounds of the Russian Academy of Sciences
Email: vlad.v.zakharov@mail.ru
ORCID iD: 0000-0002-7871-632X
SPIN-code: 1203-0639
Cand. Sci. (Biology), Research Associate at the Laboratory No. 5 (natural polymers)
Russian Federation, Saint PetersburgReferences
- Oestreicher AB, De Graan PN, Gispen WH, et al. B-50, the growth associated protein-43: Modulation of cell morphology and communication in the nervous system. Prog Neurobiol. 1997;53(6):627–686. doi: 10.1016/s0301-0082(97)00043-9
- Mosevitsky MI. Nerve ending “signal” proteins GAP-43, MARCKS, and BASP1. Int Rev Cytol. 2005;245:245–325. doi: 10.1016/s0074-7696(05)45007-x
- Denny JB. Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol. 2006;4:293–304. doi: 10.2174/157015906778520782
- Benowitz LI, Routtenberg A. GAP-43: An intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997;20(2):84–91. doi: 10.1016/s0166-2236(96)10072-2
- Aarts LHJ, Schotman P, Verhaagen J, et al. The role of the neural growth associated protein B-50/GAP-43 in morphogenesis. Adv Exp Med Biol. 1998;446:85–106. doi: 10.1007/978-1-4615-4869-0_6
- Caroni P. Neuro-regeneration: plasticity for repair and adaptation. Essays Biochem. 1998;33:53–64. doi: 10.1042/bse0330053
- Holahan MR, Honegger KS, Tabatadze N, Routtenberg A. GAP-43 gene expression regulates information storage. Learn Mem. 2007;14(6):407–415. doi: 10.1101/lm.581907
- Holahan M. A shift from a pivotal to supporting role for the Growth-Associated Protein (GAP-43) in the coordination of axonal structural and functional plasticity. Front Cell Neurosci. 2017;11:266. doi: 10.3389/fncel.2017.00266
- Chung D, Shum A, Caraveo G. GAP-43 and BASP1 in axon regeneration: implications for the treatment of neurodegenerative diseases. Front Cell Dev Biol. 2020;8:567537. doi: 10.3389/fcell.2020.567537
- Caroni P. New EMBO members’ review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. EMBO J. 2001;20(16):4332–4336. doi: 10.1093/emboj/20.16.4332
- Tong J, Nguyen L, Vidal A, et al. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to raft bilayers. Biophys J. 2008;94(1):125–133. doi: 10.1529/biophysj.107.110536
- Zakharov VV, Mosevitsky MI. Oligomeric structure of brain abundant proteins GAP-43 and BASP1. J Struct Biol. 2010;170(3):470–483. doi: 10.1016/j.jsb.2010.01.010
- Forsova OS, Zakharov VV. High-order oligomers of intrinsically disordered brain proteins BASP1 and GAP-43 preserve the structural disorder. FEBS J. 2016;283(8):1550–1569. doi: 10.1111/febs.13692
- Yang Y, Shi W, Li C, et al. Growth associated protein 43 deficiency promotes podocyte injury by activating the calmodulin/calcineurin pathway under hyperglycemia. Biochem Biophys Res Commun. 2023;656:104–114. doi: 10.1016/j.bbrc.2023.02.069
- Moradi F, Copeland EN, Baranowski RW, et al. Calmodulin-binding proteins in muscle: a minireview on nuclear receptor interacting protein, neurogranin, and growth-associated protein 43. Int J Mol Sci. 2020;21(3):1016. doi: 10.3390/ijms21031016
- Zheng С, Quan R-D, Wu C-Y, et al. Growth-associated protein 43 promotes thyroid cancer cell lines progression via epithelial-mesenchymal transition. J Cell Mol Med. 2019;23(12):7974–7984. doi: 10.1111/jcmm.14460
- Zakharova FM, Zakharov VV. Identification of brain proteins BASP1 and GAP-43 in mouse oocytes and zygotes. Russian Journal of Developmental Biology. 2017;48(3):159–168. EDN: XMPBKH doi: 10.1134/S1062360417030110
- Esdar C, Oehrlein SA, Reinhardt S, et al. The protein kinase C (PKC) substrate GAP-43 is already expressed in neural precursor cells, colocalizes with PKCeta and binds calmodulin. Eur J Neurosci. 1999;11(2):503–516. doi: 10.1046/j.1460-9568.1999.00455.x
- Mishra R, Gupta SK, Meiri KF, et al. GAP-43 is key to mitotic spindle control and centrosome-based polarization in neurons. Cell Cycle. 2008;7(3):348–357. doi: 10.4161/cc.7.3.5235
- Skene JH, Virag I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J Cell Biol. 1989;108(2):613–624. doi: 10.1083/jcb.108.2.613
- Liu Y, Fisher DA, Storm DR. Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain. J Neurosci. 1994;14(10):5807–5817. doi: 10.1523/jneurosci.14-10-05807.1994
- Horton P, Nakai K. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc Int Conf Intell Syst Mol Biol. 1997;5:147–152.
- Mooney C, Wang Y-H, Pollastri G. SCLpred: protein subcellular localization prediction by N-to-1 neural networks. Bioinformatics. 2011;27(20):2812–2819. doi: 10.1093/bioinformatics/btr494
- Garg А, Raghava GPS. ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins. BMC Bioinformatics. 2008;9:503. doi: 10.1186/1471-2105-9-503
- Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins. 2006;64(3):643–651. doi: 10.1002/prot.21018
- Blum T, Briesemeister S, Kohlbacher O. MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinformatics. 2009;10:274. doi: 10.1186/1471-2105-10-274
- Savojardo C, Martelli PL, Fariselli P, et al. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018;46(W1):W459–W466. doi: 10.1093/nar/gky320
- Kosugi S, Hasebe M, Tomita M, Yanagawa H. Systematic identification of yeast cell cycle-dependent nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci. 2009;106(25):10171–10176. doi: 10.1073/pnas.0900604106
- Nguyen Ba AN, Pogoutse A, Provart N, Moses AM. NLStradamus: a simple Hidden Markov model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10:202. doi: 10.1186/1471-2105-10-202
- Carpenter B, Hill KJ, Charalambous M, et al. BASP1 is a transcriptional cosuppressor for the Wilms’ tumor suppressor protein WT1. J Mol Cell Biol. 2004;24(2):537–549. doi: 10.1128/MCB.24.2.537–549.2004
- Rohrbach TD, Shah N, Jackson WP, et al. The effector domain of MARCKS is a nuclear localization signal that regulates cellular PIP2 levels and nuclear PIP2 localization. PLoS One. 2015;10(10):e0140870. doi: 10.1371/journal.pone.0140870
- Marino M, Hiroaki T, Yuki N, et al. Totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage. Sci Rep. 2021;11(1):11167. doi: 10.1038/s41598-021-90653-1
- Zhao J-С, Zhang L-Х, Zhang Y, Shen YF. The differential regulation of Gap43 gene in the neuronal differentiation of P19 cells. J Cell Physiol. 2012;227(6):2645–2653. doi: 10.1002/jcp.23006
- Zhao P, Schulz TC, Sherrer ES, et al. The human embryonic stem cell proteome revealed by multidimensional fractionation followed by tandem mass spectrometry. Proteomics. 2015;15(2-3):554–566. doi: 10.1002/pmic.201400132
Supplementary files
