Role of monocytes in immunopathogenesis of infectious and inflammatory diseases: from theory to practice
- Authors: Trulioff A.S.1, Borisov A.G.2, Kudriavtsev I.V.1, Lazanovich V.A.3, Savchenko A.A.2
-
Affiliations:
- Institute of Experimental Medicine
- Krasnoyarsk Science Center of the SB RAS
- EUROMED Clinik
- Issue: Vol 24, No 4 (2024)
- Pages: 9-32
- Section: Analytical reviews
- URL: https://journal-vniispk.ru/MAJ/article/view/284814
- DOI: https://doi.org/10.17816/MAJ634763
- ID: 284814
Cite item
Abstract
Monocytes are circulating blood cells derived from bone marrow. They are the body’s first line of defense against pathogens and are involved in immune responses against viruses, bacteria, fungi and parasites invasion. For a long time, monocytes were considered a homogeneous group of cells, but then by means of flow cytometry development it was shown that they can be divided into three subpopulations according to surface molecules CD14 and CD16 expression: classical (CD14++CD16–), proinflammatory (CD14+CD16++) and intermediate (CD14++CD16+). This review focuses on various mechanisms of an implementation of the functional activity of various monocytes subpopulations and their impairment in various viral diseases, bacterial infections and sepsis.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Andrey S. Trulioff
Institute of Experimental Medicine
Author for correspondence.
Email: trulioff@gmail.com
ORCID iD: 0000-0002-7495-446X
SPIN-code: 8688-7506
Cand. Sci. (Biology), Senior Research Associate of Department of Immunology
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022Alexandr G. Borisov
Krasnoyarsk Science Center of the SB RAS
Email: 2410454@mail.ru
ORCID iD: 0000-0001-6930-3243
SPIN-code: 9570-2254
Institute of Medical Problems of the North, MD, Cand. Sci. (Medicine), Leading Research Associate of Laboratory of Cell and Mollecular Phisiology and Patology
Russian Federation, KrasnoyarskIgor V. Kudriavtsev
Institute of Experimental Medicine
Email: igorek1981@yandex.ru
ORCID iD: 0000-0001-7204-7850
SPIN-code: 4903-7636
Cand. Sci. (Biology), Head of Laboratory of Cell Immunology
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022Vladimir A. Lazanovich
EUROMED Clinik
Email: immuno2003@mail.ru
ORCID iD: 0000-0003-0354-4890
SPIN-code: 1037-4447
MD, Cand. Sci. (Medicine), allergist-immunologist
Russian Federation, KrasnodarAndrei A. Savchenko
Krasnoyarsk Science Center of the SB RAS
Email: aasavchenko@yandex.ru
ORCID iD: 0000-0001-5829-672X
SPIN-code: 3132-8260
Institute of Medical Problems of the North, MD, Dr. Sci (Medicine), Head of Cell and Mollecular Phisiology and Patology
Russian Federation, KrasnoyarskReferences
- Kasparov EhV, Savchenko AA, Kudlai DA, et al. Clinical immunology. Rehabilitation of the immune system . Krasnoyarsk: Versona; 2022. 196 p.
- Gren ST, Grip O. Role of monocytes and intestinal macrophages in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2016;22(8)1992–1998. doi: 10.1097/MIB.0000000000000824
- Wallis ZK, Williams KC. Monocytes in HIV and SIV infection and aging: implications for inflamm-aging and accelerated aging. Viruses. 2022;14(2):409. doi: 10.3390/v14020409
- Cumakova SP, Urazova OI, Denisenko OA, et al. Cytokines in the mechanisms of regulation of monocytopoiesis in ischemic heart disease. Russian journal of hematology and transfusiology. 2022;67(4):511–524. EDN: FDACYA doi: 10.35754/0234-5730-2022-67-4-511-524
- Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol. 2020;92(1):e12883. doi: 10.1111/sji.12883
- Liu S, Szatmary P, Lin JW, et al. Circulating monocytes in acute pancreatitis. Front Immunol. 2022;13:1062849. doi: 10.3389/fimmu.2022.1062849
- Orozco SL, Canny SP, Hamerman JA. Signals governing monocyte differentiation during inflammation. Curr Opin Immunol . 2021;73:16–24. doi: 10.1016/j.coi.2021.07.007
- Bettke JA, Tam JW, Montoya V, et al. Inflammatory monocytes promote granuloma-mediated control of persistent salmonella infection. Infect Immun. 2022;90(4):e0007022. doi: 10.1128/iai.00070-22
- Xiong H, Pamer EG. Monocytes and infection: modulator, messenger and effector. Immunobiology. 2015;220(2):210–214. doi: 10.1016/j.imbio.2014.08.007
- Samstein M, Schreiber HA, Leiner IM, et al. Essential yet limited role for CCR2 + inflammatory monocytes during Mycobacterium tuberculosis -specific T cell priming. Elife . 2013;2:e01086. doi: 10.7554/eLife.01086
- Zhang Y, Khairallah C, Sheridan BS, et al. CCR2 + inflammatory monocytes are recruited to Yersinia pseudotuberculosis pyogranulomas and dictate adaptive responses at the expense of innate immunity during oral infection. Infect Immun. 2018;86(3):e00782–17. doi: 10.1128/IAI.00782-17
- Auger JP, Rivest S, Benoit-Biancamano MO, et al. Inflammatory monocytes and neutrophils regulate Streptococcus suis -induced systemic inflammation and disease but are not critical for the development of central nervous system disease in a mouse model of infection. Infect Immun. 2020;88(3):e00787–19. doi: 10.1128/IAI.00787-19
- Montaño DE, Hartung S, Wich M, et al. The TLR-NF-kB axis contributes to the monocytic inflammatory response against a virulent strain of Lichtheimia corymbifera , a causative agent of invasive mucormycosis. Front Immunol. 2022;13:882921. doi: 10.3389/fimmu.2022.882921
- Sabbatinelli J, Matacchione G, Giuliani A, et al. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mech Ageing Dev. 2022;204:111667. doi: 10.1016/j.mad.2022.111667
- Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74(7):2527–2534. doi: 10.1182/blood.V74.7.2527.2527
- Ziegler-Heitbrock HW, Passlick B, Flieger D. The monoclonal antimonocyte antibody My4 stains B lymphocytes and two distinct monocyte subsets in human peripheral blood. Hybridoma. 1988;7(6):521–527. doi: 10.1089/hyb.1988.7.521
- Wright SD, Ramos RA, Tobias PS, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249(4975):1431–1433. doi: 10.1126/science.1698311
- Li L, Cai W, Guo P, et al. Characteristics and clinical significance of plasma IL-18, sCD14, and sCD163 levels in patients with HIV-1 infection. J Med Virol. 2023;95(1):e28223. doi: 10.1002/jmv.28223
- Maddaloni C, De Rose DU, Santisi A, et al. The emerging role of presepsin (P-SEP) in the diagnosis of sepsis in the critically ill infant: a literature review. Int J Mol Sci. 2021;22(22):12154. doi: 10.3390/ijms222212154
- Hsieh WT, Hsu MH, Lin WJ, et al. Ergosta-7, 9 (11), 22-trien-3β-ol Interferes with LPS docking to LBP, CD14, and TLR4/MD-2 Co-receptors to attenuate the NF-κB inflammatory pathway in vitro and drosophila. Int J Mol Sci. 2021;22(12):6511. doi: 10.3390/ijms22126511
- Gonzalez JC, Chakraborty S, Thulin NK, Wang TT. Heterogeneity in IgG-CD16 signaling in infectious disease outcomes. Immunol Rev. 2022;309(1):64–74. doi: 10.1111/imr.13109
- Fall AKDJ, Dechavanne C, Sabbagh A, et al. Combined polymorphisms involving the IgG heavy chain and Fc gamma receptors among Fulani and non-Fulani in Benin: implications for the natural protection of young Fulani against Plasmodium falciparum malaria infections. Infect Genet Evol. 2023;112:105461. doi: 10.1016/j.meegid.2023.105461
- Nasr A, Aljada A, Hamid O, et al. Significant differences in FcγRIIa , FcγRIIIa and FcγRIIIb genes polymorphism and anti-malarial IgG subclass pattern are associated with severe Plasmodium falciparum malaria in Saudi children. Malar J. 2021;20(1):376. doi: 10.1186/s12936-021-03901-0
- Shimizu Y, Kohyama M, Yorifuji H, et al. FcγRIIIA-mediated activation of NK cells by IgG heavy chain complexed with MHC class II molecules. Int Immunol. 2019;31(5):303–314. doi: 10.1093/intimm/dxz010
- Treffers LW, van Houdt M, Bruggeman CW, et al. FcγRIIIb restricts antibody-dependent destruction of cancer cells by human neutrophils. Front Immunol. 2019;(9):3124. doi: 10.3389/fimmu.2018.03124
- Hellman L. Phenotypic and functional heterogeneity of monocytes and macrophages. Int J Mol Sci. 2023;24(19):14525. doi: 10.3390/ijms241914525
- Williams H, Mack C, Baraz R, et al. Monocyte differentiation and heterogeneity: inter-subset and interindividual differences. Int J Mol Sci. 2023;24(10):8757. doi: 10.3390/ijms24108757
- Buscher K, Marcovecchio P, Hedrick CC, Ley K. Patrolling mechanics of non-classical monocytes in vascular inflammation. Front Cardiovasc Med. 2017;4:80. doi: 10.3389/fcvm.2017.00080
- Gabriel H, Urhausen A, Brechtel L, et al. Alterations of regular and mature monocytes are distinct, and dependent of intensity and duration of exercise. Eur J Appl Physiol Occup Physiol. 1994;69(2):179–181. doi: 10.1007/BF00609414
- Slavick A, Furer V, Polachek A, et al. Circulating and synovial monocytes in arthritis and ex-vivo model to evaluate therapeutic modulation of synovial monocytes. Immunol Invest. 2023;52(7):832–855. doi: 10.1080/08820139.2023.2247438
- Tamene W, Marconi VC, Abebe M, et al. Differential expression of chemokine receptors on monocytes in TB and HIV S. Heliyon. 2023;9(6):e17202. doi: 10.1016/j.heliyon.2023.e17202
- Bianconi V, Sahebkar A, Atkin SL, Pirro M. The regulation and importance of monocyte chemoattractant protein-1. Curr Opin Hematol. 2018:25(1):44–51. doi: 10.1097/MOH.0000000000000389
- Patysheva MR, Stakheeva MN, Larionova IV, et al. Monocytes and cancer: promising role as a diagnostic marker and application in therapy. Bulletin of Siberian Medicine. 2019;18(1):60–75. EDN: ARRYLN doi: 10.20538/1682-0363-2019-1-60-75
- Jarosova R, Ondrackova P, Leva L, et al. Cytokine expression by CD163 + monocytes in healthy and Actinobacillus pleuropneumoniae -infected pigs. Res Vet Sci. 2022;152:1–9. doi: 10.1016/j.rvsc.2022.07.015
- Lee JG, Jaeger KE, Seki Y, et al. Human CD36hi monocytes induce Foxp3 + CD25 + T cells with regulatory functions from CD4 and CD8 subsets. Immunology. 2021:163(3):293–309. doi: 10.1111/imm.13316
- Qu PF, Li R, Xu C, et al. A clinical pilot study to evaluate CD64 expression on blood monocytes as an indicator of periprosthetic joint infection. J Bone Joint Surg Am. 2020;102(17):e99. doi: 10.2106/JBJS.20.00057
- Lekka K, Marangos M, Roupas N, et al. Evaluation of the activity of neutrophils and monocytes in diabetic patients with sepsis, can surface antigens HLA-DR and CD64 be useful as prognostic factors? J Clin Med Res. 2020;12(3):157–164. doi: 10.14740/jocmr4068
- Savchenko AA, Borisov AG, Modestov AA, et al. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Medical immunoljgy . 2015;17(2):141–150. EDN: TORDFB doi: 10.15789/1563-0625-2015-2-141-150
- Novais FO, Nguyen BT, Beiting DP, et al. Human classical monocytes control the intracellular stage of Leishmania braziliensis by reactive oxygen species. J Infect Dis. 2014;209(8):1288–1296. doi: 10.1093/infdis/jiu013
- Zawada AM, Rogacev KS, Rotter B, et al. SuperSAGE evidence for CD14 ++ CD16 + monocytes as a third monocyte subset. Blood. 2011;118(12):e50–e61. doi: 10.1182/blood-2011-01-326827
- Cros J, Cagnard N, Woollard K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33(3):375–386. doi: 10.1016/j.immuni.2010.08.012
- Urbán-Solano A, Flores-Gonzalez J, Cruz-Lagunas A, et al. High levels of PF4, VEGF-A, and classical monocytes correlate with the platelets count and inflammation during active tuberculosis. Front Immunol. 2022;13:1016472. doi: 10.3389/fimmu.2022.1016472
- Lira-Junior R, Holmström SB, Clark R, et al. S100A12 expression is modulated during monocyte differentiation and reflects periodontitis severity. Front Immunol. 2020;11:86. doi: 10.3389/fimmu.2020.00086
- Gaur P, Myles A, Misra R, Aggarwal A. Intermediate monocytes are increased in enthesitis-related arthritis, a category of juvenile idiopathic arthritis. Clin Exp Immunol. 2017;187(2):234–241. doi: 10.1111/cei.12880
- Connaughton EP, Naicker S, Hanley SA, et al. Phenotypic and functional heterogeneity of human intermediate monocytes based on HLA-DR expression. Immunol Cell Biol. 2018;5:45. doi: 10.1111/imcb.12032
- Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical monocytes in health and disease. Annu Rev Immunol . 2019;37:439–456. doi: 10.1146/annurev-immunol-042617-053119
- Marcovecchio PM, Zhu YP, Hanna RN, et al. Frontline science: Kindlin-3 is essential for patrolling and phagocytosis functions of nonclassical monocytes during metastatic cancer surveillance. J Leukoc Biol. 2020;107(6):883–892. doi: 10.1002/JLB.4HI0420-098R
- Radzyukevich YV, Kosyakova NI, Prokhorenko IR. Participation of monocyte subpopulations in progression of experimental endotoxemia (EE) and systemic inflammation. J Immunol Res. 2021;2021:1762584. doi: 10.1155/2021/1762584
- Cormican S, Griffin MD. Human monocyte subset distinctions and function: insights from gene expression analysis. Front Immunol. 2020;11:1070. doi: 10.3389/fimmu.2020.01070
- Kapellos TS, Bonaguro L, Gemünd I, et sl. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035. doi: 10.3389/fimmu.2019.02035
- Lehman N, Kowalska W, Zarobkiewicz M, et al. Pro- vs. Anti-inflammatory features of monocyte subsets in glioma patients. Int J Mol Sci. 2023;24(3):1879. doi: 10.3390/ijms24031879
- Kalashnikova AA, Voroshilova TM, Chinenova LV, et al. Monocyte subsets in healthy adults and sepsis patients. Medical immunology. 2018;20(6):815–824. EDN: YOOZML doi: 10.15789/1563-0625-2018-6-815-824
- Sampath P, Moideen K, Ranganathan UD, Bethunaickan R. Monocyte subsets: phenotypes and function in tuberculosis infection. Front Immunol. 2018;9:1726. doi: 10.3389/fimmu.2018.01726
- Rambaran S, Maseko TG, Lewis L, et al. Blood monocyte and dendritic cell profiles among people living with HIV with Mycobacterium tuberculosis co-infection. BMC Immunol. 2023;24(1):21. doi: 10.1186/s12865-023-00558-z
- Zhang ML, Jiang YF, Wang XR, et al. Different phenotypes of monocytes in patients with new-onset mild acute pancreatitis. World J Gastroenterol. 2017;23(8):1477–1488. doi: 10.3748/wjg.v23.i8.1477
- Zheng J, Fan J, Huang C, et al. Dynamic detection of monocyte subsets in peripheral blood of patients with acute hypertriglyceridemic pancreatitis. Gastroenterol Res Pract. 2019;2019:5705782. doi: 10.1155/2019/5705782
- Zhang M, Ding L, Wang X, et al. Circulating CD14 + CD163 + CD115 + M2 monocytes are associated with the severity of new onset severe acute pancreatitis in Chinese patients. Int Immunopharmacol. 2018;57:181–189. doi: 10.1016/j.intimp.2018.02.018
- Grainger JR, Wohlfert EA, Fuss IJ, et al. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat Med. 2013;19(6):713–721. doi: 10.1038/nm.3189
- Yang J, Qiao M, Li Y, et al. Expansion of a population of large monocytes (atypical monocytes) in peripheral blood of patients with acute exacerbations of chronic obstructive pulmonary diseases. Mediators Inflamm. 2018;2018:9031452. doi: 10.1155/2018/9031452
- Gudenschwager Basso EK, Ju J, Soliman E, et al. Immunoregulatory and neutrophil-like monocyte subsets with distinct single-cell transcriptomic signatures emerge following brain injury. J Neuroinflammation . 2024;21(1):41. doi: 10.1186/s12974-024-03032-8
- Ikeda N, Kubota H, Suzuki R, et al. The early neutrophil-committed progenitors aberrantly differentiate into immunoregulatory monocytes during emergency myelopoiesis. Cell Rep. 2023;42(3):112165. doi: 10.1016/j.celrep.2023.112165 .
- Wiencke JK, Nissen E, Koestler DC, et al. Enrichment of a neutrophil-like monocyte transcriptional state in glioblastoma myeloid suppressor cells. // Res Sq [Preprint]. 2023:rs.3.rs–3793353. doi: 10.21203/rs.3.rs-3793353/v1
- Brown B, Ojha V, Fricke I, et al. Innate and adaptive immunity during SARS-CoV-2 infection: biomolecular cellular markers and mechanisms. Vaccines (Basel). 2023;11(2):408. doi: 10.3390/vaccines11020408
- Kudryavtsev I, Rubinstein A, Golovkin A, et al. Dysregulated immune responses in SARS-CoV-2-infected patients: a comprehensive overview. Viruses. 2022;(5):1082. doi: 10.3390/v14051082
- Zhang D, Guo R, Lei L, et al. Frontline Science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes. J Leukoc Biol. 2021;109(1):13–22. doi: 10.1002/JLB.4HI0720-470R
- Zhou Z, Ren L, Zhang L, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe. 2020;27(6):883–890.e2. doi: 10.1016/j.chom.2020.04.017
- Mann ER, Menon M, Knight SB, et al. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci Immunol. 2020;5(51):eabd6197. doi: 10.1126/sciimmunol.abd6197
- Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe . 2020;27(6):992–1000.e3 . doi: 10.1016/j.chom.2020.04.009
- Kuri-Cervantes L, Pampena MB, Meng W, et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol. 2020;5(49):eabd7114. doi: 10.1126/sciimmunol.abd7114
- Arunachalam PS, Wimmers F, Mok CKP, et al. Systems biological assessment of immunity to mild versus severe COVID -19 infection in humans. Science. 2020;369(6508):1210–1220. doi: 10.1126/science.abc6261
- Guo C, Li B, Ma H, et al. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nat Commun. 2020;11(1):3924. doi: 10.1038/s41467-020-17834-w
- Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity. 2018;49(4):595–613. doi: 10.1016/j.immuni.2018.10.005
- Laing AG, Lorenc A, Del Molino Del Barrio I., et al. A dynamic COVID -19 immune signature includes associations with poor prognosis. Nat Med. 2020;26(10):1623–1635. doi: 10.1038/s41591-020-1038-6
- Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070–1076. doi: 10.1038/s41591-020-0944-y
- Silvin A, Chapuis N, Dunsmore G, et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell . 2020;182(6):1401–1418.e18. doi: 10.1016/j.cell.2020.08.002
- Chilunda V, Martinez-Aguado P, Xia LC, et al. Transcriptional changes in CD16 + monocytes may contribute to the pathogenesis of COVID-19. Front Immunol. 2021;12:665773. doi: 10.3389/fimmu.2021.665773
- Schulte-Schrepping J, Reusch N, Paclik D, et al. Suppressive myeloid cells are a hallmark of severe COVID-19. MedRxiv . 2020. doi: 10.1101/2020.06.03.20119818
- Gómez-Rial J, Currás-Tuala MJ, Rivero-Calle I, et al. Increased serum levels of sCD14 and sCD163 indicate a preponderant role for monocytes in COVID-19 immunopathology. Front Immunol . 2020;11:560381. doi: 10.3389/fimmu.2020.560381
- Monneret G, Lepape A, Voirin N, et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 2006;32:1175–1183. doi: 10.1007/s00134-006-0204-8
- Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7(1):12150. doi: 10.1038/ncomms12150
- Xu G, Qi F, Li H, et al. The differential immune responses to COVID -19 in peripheral and lung revealed by single-cell RNA sequencing. Cell Discov . 2020;6(1):73. doi: 10.1038/s41421-020-00225-2
- Hopkins FR, Govender M, Svanberg C, et al. Major alterations to monocyte and dendritic cell subsets lasting more than 6 months after hospitalization for COVID-19. Front Immunol . 2023;13:1082912. doi: 10.3389/fimmu.2022.1082912
- Ohno Y, Kitamura H, Takahashi N, et al. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4 + T cells. Cancer Immunol Immunother. 2016;65:193–204. doi: 10.1007/s00262-015-1791-4
- Ivashkin VT, Chulanov VP, Mamonova NA, et al. Clinical Practice Guidelines of the Russian Society for the Study of the Liver, the Russian Gastroenterological Association, the National Scientific Society of Infectious Disease Specialists for the Diagnosis and Treatment of Chronic Hepatitis C. Russian Journal of Gastroenterology, Hepatology, Coloproctology . 2023;33(1):84–124. EDN: IUKGIX doi: 10.22416/1382-4376-2023-33-1-84-124
- Tsukanov VV, Savchenko AA, Cherepnin MA, et al. Association of blood NK cell phenotype with the severity of liver fibrosis in patients with chronic viral hepatitis c with genotype 1 or 3. Diagnostics . 2024;14(5):472. doi: 10.3390/diagnostics14050472
- Lee MH, Chen YT, Huang YH, et al. Chronic viral hepatitis B and c outweigh MASLD in the associated risk of cirrhosis and HCC. Clin Gastroenterol Hepatol. 2024;22(6):1275–1285e2. doi: 10.1016/j.cgh.2024.01.045
- Schlaak JF. Current therapy of chronic viral hepatitis B, C and D. J Pers Med. 2023;13(6):964. doi: 10.3390/jpm13060964
- Chen C, Cai H, Shen J, et al. Exploration of a hypoxia-immune-related microenvironment gene signature and prediction model for hepatitis C-induced early-stage fibrosis. J Transl Med. 2024;22(1):116. doi: 10.1186/s12967-024-04912-6
- Ferrasi AC, Lima SVG, Galvani AF, et al. Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways. World J Hepatol. 2023;15(11):1237–1249. doi: 10.4254/wjh.v15.i11.1237
- Sellau J, Puengel T, Hoenow S, et al. Monocyte dysregulation: consequences for hepatic infections. Semin Immunopathol. 2021;(N):493–506. doi: 10.1007/s00281-021-00852-1
- Song H, Tan G, Yang Y, et al. Hepatitis B virus-induced imbalance of inflammatory and antiviral signaling by differential phosphorylation of STAT1 in human monocytes. J Immunol. 2019;202(8):2266–2275. doi: 10.4049/jimmunol.1800848
- Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. Front Netw Physiol. 2022;2:937739. doi: 10.3389/fnetp.2022.937739
- Tan-Garcia A, Lai F, Sheng Yeong JP, et al. Liver fibrosis and CD206 + macrophage accumulation are suppressed by anti-GM-CSF therapy. JHEP Rep. 2019;2(1)100062. doi: 10.1016/j.jhepr.2019.11.006
- Riad NM, AbdEl Ghaffar HA, Mansour RR, et al. Clinical significance of evaluation of monocytic receptors in patients with hepatitis c virus infection. Viral Immunol. 2023;36(7):475–483. doi: 10.1089/vim.2022.0180
- Ali F, Hammad R, Kotb FM, et al. Flow cytometry assessment of monocyte subsets alteration in hepatocellular carcinoma post hepatitis C virus infection. Egypt J Immunol. 2022;29(4):33–45.
- Leplina OY, Tikhonova MA, Meledina IV, et al. Topical issues of clinical symptoms and diagnostics of septic shock. Russian Journal of Infection and Immunity . 2022;12(3):475–485. EDN: EPFQUA doi: 10.15789/2220-7619-CMS-1810
- Hernández-Sarmiento LJ, Valdés-López JF, Urcuqui-Inchima S. American-Asian- and African lineages of Zika virus induce differential pro-inflammatory and Interleukin 27-dependent antiviral responses in human monocytes. Virus Res. 2023;325:199040. doi: 10.1016/j.virusres.2023.199040
- Michlmayr D, Andrade P, Gonzalez K, et al. CD14 + CD16 + monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a paediatric study in Nicaragua. Nat Microbiol. 2017;2(11):1462–1470. doi: 10.1038/s41564-017-0035-0
- Serman TM, Gack MU. Evasion of innate and intrinsic antiviral pathways by the Zika virus. Viruses . 2019;11(10):970. doi: 10.3390/v11100970
- Savchenko AA, Martynova GP, Ikkes LA, et al. Changes in in vitro GM-CSF-exposured monocyte subset composition and phagocytic activity in children with infectious mononucleosis. Russian Journal of Infection and Immunity. 2023;13(3):446–456 . EDN: OITDKO doi: 10.15789/2220-7619-CII-4666
- Jog NR, Chakravarty EF, Guthridge JM, James JA. Epstein barr virus interleukin 10 suppresses anti-inflammatory phenotype in human monocytes. Front Immunol . 2018;9:2198. doi: 10.3389/fimmu.2018.02198
- Xu X, Zhu N, Zheng J, et al. EBV abortive lytic cycle promotes nasopharyngeal carcinoma progression through recruiting monocytes and regulating their directed differentiation. PLoS Pathog. 2024;20(1):e1011934. doi: 10.1371/journal.ppat.1011934
- Chen M, Yu S, Gao Y, et al. TRAF6-TAK1-IKKβ pathway mediates TLR2 agonists activating “one-step” NLRP3 inflammasome in human monocytes. Cytokine . 2023;169:156302. doi: 10.1016/j.cyto.2023.156302
- Dimitrov E, Halacheva K, Minkov G, et al. Prediction of outcome using CD14 ++ CD16 – , CD14 ++ CD16 + and CD14 + CD16 ++ monocyte subpopulations in patients with complicated intra-abdominal infections. Med Microbiol Immunol. 2023;212(5):381–390. doi: 10.1007/s00430-023-00779-4
- Lauvau G, Loke P, Hohl TM. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol. 2015;27(6):397–409 . doi: 10.1016/j.smim.2016.03.014
- Cloots RH, Sankaranarayanan S, de Theije CC, et al. Ablation of Arg1 in hematopoietic cells improves respiratory function of lung parenchyma, but not that of larger airways or inflammation in asthmatic mice. Am J Physiol Lung Cell Mol Physiol. 2013;305(5):L364–3L76. doi: 10.1152/ajplung.00341.2012
- Hoenow S, Yan K, Noll J, et al. The properties of proinflammatory Ly6Chi monocytes are differentially shaped by parasitic and bacterial liver infections. Cells . 2022;11(16):2539. doi: 10.3390/cells11162539
- Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM, et al. Inflammation in renal diseases: new and old players. Front Pharmacol. 2019;10:1192. doi: 10.3389/fphar.2019.01192
- Biram A, Liu J, Hezroni H, et al. Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity. 2022;55(3):442–458.e8. doi: 10.1016/j.immuni.2022.01.013
- Park MY, Kim HS, Jeong YS, et al. Novel Sca-1 + macrophages modulate the pathogenic progress of endotoxemia. Biochem Biophys Res Commun. 2020;533(1):83–89. doi: 10.1016/j.bbrc.2020.08.118
- Popescu M, Cabrera-Martinez B, Winslow GM. TNF-α contributes to lymphoid tissue disorganization and germinal center B Cell suppression during intracellular bacterial infection. J Immunol. 2019;203(9):2415–2424. doi: 10.4049/jimmunol.1900484
- Wang G, Zhao H, Zheng B, et al. TLR2 promotes monocyte/macrophage recruitment into the liver and microabscess formation to limit the spread of Listeria monocytogenes . Front Immunol. 2019;10:1388. doi: 10.3389/fimmu.2019.01388 .
- McLaughlin PA, Bettke JA, Tam JW, et al. Inflammatory monocytes provide a niche for Salmonella expansion in the lumen of the inflamed intestine. PLoS Pathog. 2019;15(7):e1007847. doi: 10.1371/journal.ppat.1007847
- Shima Y, Masuda T, Miwa N, et al. Monocytes predict prognosis and successful treatment in older patients with miliary tuberculosis. J Clin Tuberc Other Mycobact Dis. 2024;35:100437. doi: 10.1016/j.jctube.2024.100437
- Luo M, Zou X, Zeng Q, et al. Monocyte at diagnosis as a prognosis biomarker in tuberculosis patients with anemia. Front Med (Lausanne). 2023;10:1141949. doi: 10.3389/fmed.2023.1141949
- Wang W, Wang LF, Liu YY, et al. Value of the ratio of monocytes to lymphocytes for monitoring tuberculosis therapy. Can J Infect Dis Med Microbiol. 2019;2019:3270393. doi: 10.1155/2019/3270393
- Rao Muvva J, Parasa VR, Lerm M, et al. Polarization of human monocyte-derived cells with vitamin D promotes control of Mycobacterium tuberculosis infection. Front Immunol . 2020;10:3157. doi: 10.3389/fimmu.2019.03157
- Venet F, Demaret J, Gossez M, Monneret G. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci. 2021;1499(1):3–17. doi: 10.1111/nyas.14333
- Passos S, Carvalho LP, Costa RS, Campos TM. Intermediate monocytes contribute to pathologic immune response in Leishmania braziliensis infections. J Infect Dis. 2015;211(2):274–282. doi: 10.1093/infdis/jiu439
- Fingerle G, Pforte A, Passlick B, Blumenstein M. The novel subset of CD14 + /CD16 + blood monocytes is expanded in sepsis patients. Blood . 1993;82(10):3170–3176. doi: 10.1182/blood.V82.10.3170.3170
- Herra CM, Keane CT, Whelan A. Increased expression ofFcγ receptors on neutrophils and monocytes may reflect ongoing bacte-rial infection. J Med Microbiol. 1996;44:135–140. doi: 10.1099/00222615-44-2-135
- Nockher WA, Scherberich JE. Expanded CD14 + CD16 + monocyte subpopulation in patients with acute and chronic infectionsundergoing hemodialysis. Infect Immun. 1998;66:2782–2790. doi: 10.1128/iai.66.6.2782-2790.1998
- Liepelt A, Hohlstein P, Gussen H, Differential gene expression in circulating CD14( + ) monocytes indicates the prognosis of critically Ill patients with sepsis. J Clin Med. 2020;9(1):127. doi: 10.3390/jcm9010127
- Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R. Non-Classical monocytes display inflammatory features: Validation in sepsis and systemic lupus erythematous. Sci Rep. 2015;5:13886. doi: 10.1038/srep13886
- Chung H, Lee JH, Jo YH, et al. Circulating monocyte counts and its impact on outcomes in patients with severe sepsis including septic shock. Shock . 2019;51(4):423–429. doi: 10.1097/SHK.0000000000001193
- Ferreira da Mota NV, Brunialti MK, Santos SS. Immunophenotyping of monocytes during human sepsis shows impairment in antigen presentation. Shock . 2018;50(3):293–300. doi: 10.1097/SHK.0000000000001078
- Skrzeczynska J, Kobylarz K, Hartwich Z, Zembala M. CD14 + CD16 + monocytes in the course of sepsis in neonates and small children: monitoring and functional studies. Scand J Immunol. 2002;55:629–638. doi: 10.1046/j.1365-3083.2002.01092.x
- Hortová-Kohoutková M, Lázničková P, Bendíčková K, et al. Differences in monocyte subsets are associated with short-term survival in patients with septic shock. J Cell Mol Med. 2020;24(21):12504–1251. doi: 10.1111/jcmm.15791
- Lazanovich VA, Markelova EV, Smirnov GA, Pavlov VA. TOLL-receptors on monocytes and their clinical significance in patients with sepsis. Russian Immunological Journal. 2014;8(3(17)):825–828 . EDN: TFFUCD
- Lazanovich VA, Markelova EV, Karaulov AV, et al. Clinical significance of TLR2 and TLR4 expression on the cells of the myeloid series and serum cytokine levels in patients with sepsis. Immunopathology, allergology, infectology. 2015;2:71–76. EDN: VAOEDR doi: 10.14427/jipai.2015.2.71
- Greco M, Mazzei A, Palumbo C, et al. Flow cytometric analysis of monocytes polarization and reprogramming from inflammatory to immunosuppressive phase during sepsis. EJIFCC . 2019;30(4):371–384.
- Ziegler-Heitbrock L. The CD14 + CD16 + blood monocytes: their role ininfection and inflammation. J Leukoc Biol. 2007;81(3):584–592 . doi: 10.1189/jlb.0806510
- Belge KU, Dayyani F, Horelt A, Siedlar M. The proinflammatory CD14 + CD16 + DR ++ monocytes are a major source of TNF. J Immunol. 2002;168:3536–3542. doi: 10.4049/jimmunol.168.7.3536
- Mizuno K, Toma T, Tsukiji H, et al. Selective expansion of CD16 high CCR2 – subpopulation of circulating monocytes with preferential production of haem oxygenase (HO)-1 in response to acute inflammation. Clin Exp Immunol. 2005;142:461–470. doi: 10.1111/j.1365-2249.2005.02932.x
- Kamińska J, Lisowska A, Koper-Lenkiewicz OM, Mikłasz P. Differences in monocyte subsets and monocyte-platelet aggregates in acute myocardial infarction-preliminary results. Am J Med Sci. 2019;357(5):421–434. doi: 10.1016/j.amjms.2019.02.010
Supplementary files
