Increased somatic polyploidization in chorion of arrested pregnancies conceived through assisted reproductive technologies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The search for markers of disorders leading to miscarriage with normal embryonic karyotype is an important clinical and diagnostic problem, especially in pregnancies conceived with assisted reproductive technologies.

AIM: Analysis of chorionic cells ploidy in naturally and assisted reproductive technologies conceived pregnancies.

MATERIALS AND METHODS: A total of 52 chorion samples were included in the study. The samples were divided into groups depending on the developmental status of pregnancy (progressing/arrested), the way of conception (natural/assisted reproductive technologies) and karyotype (normal/trisomy 16). The ploidy of chorionic cells was studied using fluorescence in situ hybridization on interphase nuclei preparations. A total of 50,657 interphase nuclei were analyzed.

RESULTS: Along with predominant diploid cells, polyploid cells were detected in all chorionic samples. Their frequency varied among samples from 0.1 to 8.22%. Polyploid cells comprised mainly tetraploid cells which were detected in all samples; triploid cells were also detected in 45 samples, and octoploid cells — in 5 samples. The highest total frequency of all polyploid cell types was found in chorion from assisted reproductive technologies-conceived arrested pregnancies, and the lowest — in chorion from progressing pregnancies. Frequency of tetraploid cells demonstrated the same pattern. Frequency of triploid cells was not associated with a developmental status of pregnancy and the way of conception. However, in chorion samples with trisomy on chromosome 16 in naturally conceived arrested pregnancies, a tendency towards a decrease in the frequency of triploid cells was noted.

CONCLUSIONS: An elevated frequency of polyploid cells in chorion may indicate placentation abnormalities, leading to miscarriage even in the absence of embryonic karyotype anomalies. Therefore, an increase in somatic polyploidization in chorion may be considered a promising diagnostic marker of disorders in the placenta formation and functioning.

About the authors

Andrei V. Tikhonov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: tixonov5790@gmail.com
ORCID iD: 0000-0002-2557-6642
SPIN-code: 3170-2629

Cand. Sci. (Biology), Research Associate

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Mikhail I. Krapivin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: krapivin-mihail@mail.ru
ORCID iD: 0000-0002-1693-5973
SPIN-code: 4989-1932

Junior Research Associate

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Lyubov I. Petrova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: petrovaluba@mail.ru
ORCID iD: 0000-0002-2471-0256
SPIN-code: 8599-6886

Research Assistant

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Olga G. Chiryaeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: chiryaeva@mail.ru
ORCID iD: 0000-0003-4441-1736
SPIN-code: 4027-4908

Cand. Sci. (Biology), biologist

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Elizaveta P. Pashkova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: lipashkova07@gmail.com
ORCID iD: 0000-0002-3035-522X

Nurse

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Arina V. Golubeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: AlikovaAV1504@yandex.ru
ORCID iD: 0000-0003-1613-222X
SPIN-code: 4610-3686

Research Assistant

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Dmitrii A. Staroverov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: enigstaroverov@yandex.ru
ORCID iD: 0009-0004-9716-4964

Research Assistant

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Ekaterina D. Trusova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: trusova.ek@mail.ru
ORCID iD: 0009-0005-6529-5799

Research Assistant

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Olga A. Efimova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: efimova_o82@mail.ru
ORCID iD: 0000-0003-4495-0983
SPIN-code: 6959-5014

Cand. Sci. (Biology), Head of the Laboratory of Cytogenetics and Cytogenomics of Reproduction

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089

MD, Dr. Sci. (Medicine), Deputy Director for Research

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Anna A. Pendina

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: pendina@mail.ru
ORCID iD: 0000-0001-9182-9188
SPIN-code: 3123-2133

Cand. Sci. (Biology), Senior Research Associate

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

References

  1. Ellish NJ, Saboda K, O’Connor J, et al. A prospective study of early pregnancy loss. Hum Reprod. 1996;11(2):406–412. doi: 10.1093/humrep/11.2.406
  2. Cohain JS, Buxbaum RE, Mankuta D. Spontaneous first trimester miscarriage rates per woman among parous women with 1 or more pregnancies of 24 weeks or more. BMC Pregnancy Childbirth . 2017;17(1):437. doi: 10.1186/s12884-017-1620-1
  3. van den Boogaard E, Hermens RP, Verhoeve HR, et al. Selective karyotyping in recurrent miscarriage: are recommended guidelines adopted in daily clinical practice? Hum Reprod. 2011;26(8):1965–1970. doi: 10.1093/humrep/der179
  4. Dimitriadis E., Menkhorst E., Saito S., et al. Recurrent pregnancy loss. Nat Rev Dis Primers . 2020;6(1):98. doi: 10.1038/s41572-020-00228-z
  5. Cao C, Bai S, Zhang J, et al. Understanding recurrent pregnancy loss: recent advances on its etiology, clinical diagnosis, and management. Med Rev. 2021;2(6):570–589. doi: 10.1515/mr-2022-0030
  6. Bespalova ON, Kogan IYu, Abashova EI, et al. Early Reproductive Losses. Moscow: GEOTAR-Media; 2024. 464 p. EDN: EIWUFJ doi: 10.33029/9704-7905-6-RRP-2024-1-464
  7. Baranov VS, Kuznetsova TV. Cytogenetics of human embryo development . Saint Petersburg: Izdatelstvo N-L; 2007. 640 c. (In Russ.) EDN: UOKSUW
  8. Nagaishi M, Yamamoto T, Iinuma K, et al. Chromosome abnormalities identified in 347 spontaneous abortions collected in Japan. J Obstet Gynaecol Res. 2004;30(3):237–241. doi: 10.1111/j.1447-0756.2004.00191.x
  9. Ljunger E, Cnattingius S, Lundin C, et al. Chromosomal anomalies in first-trimester miscarriages. Acta Obstet Gynecol Scand. 2005;84(11):1103–1107. doi: 10.1111/j.0001-6349.2005.00882.x
  10. Pendina AA, Efimova OA, Chiryaeva OG, et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years. J Assist Reprod Genet. 2014;31(2):149–155. doi: 10.1007/s10815-013-0148-1
  11. El-Talatini MR, Taylor AH, Konje JC. Fluctuation in anandamide levels from ovulation to early pregnancy in in-vitro fertilization-embryo transfer women, and its hormonal regulation. Hum Reprod. 2009;(24):1989–1998. doi: 10.1093/humrep/dep065
  12. Joo BS, Park SH, An BM, et al. Serum estradiol levels during controlled ovarian hyperstimulation influence the pregnancy outcome of in vitro fertilization in a concentration-dependent manner. Fertil Steril. 2010;(93):442–446. doi: 10.1016/j.fertnstert.2009.02.066
  13. de Waal E, Yamazaki Y, Ingale P, et al. Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum Mol Genet . 2012;(21):4460–4472. doi: 10.1093/hmg/dds287
  14. Song S, Ghosh J, Mainigi M, et al. DNA methylation differences between in vitro - and in vivo -conceived children are associated with ART procedures rather than infertility. Clin Epigenetics. 2015;(7):41. doi: 10.1186/s13148-015-0071-7
  15. Senapati S, Wang F, Ord T, et al. Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation. J Assist Reprod Genet. 2018;(35):1799–1808. doi: 10.1007/s10815-018-1244-z
  16. Stuart TJ, O’Neill K, Condon D, et al. Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouse. Biol Reprod. 2018;(98):795–809. doi: 10.1093/biolre/ioy010
  17. Vrooman LA, Rhon-Calderon EA, Chao OY, et al. Assisted reproductive technologies induce temporally specific placental defects and the preeclampsia risk marker sFLT1 in mouse. Development. 2020;147(11):dev186551. doi: 10.1242/dev.186551
  18. Weinerman R, Ord T, Bartolomei MS, et al. The superovulated environment, independent of embryo vitrification, results in low birthweight in a mouse model. Biol Reprod . 2017;(97):133–142. doi: 10.1093/biolre/iox067
  19. Sullivan-Pyke C, Mani S, Rhon-Calderon EA, et al. Timing of exposure to gonadotropins has differential effects on the conceptus: evidence from a mouse model. Biol Reprod. 2020;(103):854–865. doi: 10.1093/biolre/ioaa109
  20. Kalra SK, Ratcliffe SJ, Coutifaris C, et al. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011;(118):863–871. doi: 10.1097/AOG.0b013e31822be65f
  21. Baczyk D, Drewlo S, Proctor L, et al. Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ. 2009;16(5):719–727. doi: 10.1038/cdd.2009.1
  22. Knöfler M, Haider S, Saleh L, et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–3496. doi: 10.1007/s00018-019-03104-6
  23. Pfeffer PL, Pearton DJ. Trophoblast development. Reproduction. 2012;143(3):231–246. doi: 10.1530/REP-11-0374
  24. Zybina EV. Cytology of trophoblast . Leningrad: Nauka; 1986. 192 p. (In Russ.)
  25. Velicky P, Meinhardt G, Plessl K, et al. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet. 2018;14(10):e1007698. doi: 10.1371/journal.pgen.1007698
  26. Karpishchenko AL, editor. Medical laboratory technologies and diagnostics. Guide to clinical laboratory diagnostics . In 2 vols. Vol. 2. Saint Petersburg: GEOTAR-Media; 2013. 792 p. (In Russ.) EDN: ZRGHBN
  27. Efimova OA, Pendina AA, Tikhonov AV, et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget. 2017;8(51):88294–88307. doi: 10.18632/oncotarget.18331
  28. Aplin JD, Haigh T, Vicovac L, et al. Anchorage in the developing placenta: an overlooked determinant of pregnancy outcome? Hum Fertil (Camb). 1998;1(1):75–79. doi: 10.1080/1464727982000198161
  29. Lee HO, Davidson JM, Duronio RJ. Endoreplication: polyploidy with purpose. Genes Dev. 2009;23(21):2461–2477. doi: 10.1101/gad.1829209
  30. Hannon T, Innes BA, Lash GE, et al. Effects of local decidua on trophoblast invasion and spiral artery remodeling in focal placenta creta – an immunohistochemical study. Placenta. 2012;33(12):998–1004. doi: 10.1016/j.placenta.2012.09.004
  31. Chakraborty C, Gleeson LM, McKinnon T, et al. Regulation of human trophoblast migration and invasiveness. Can J Physiol Pharmacol . 2002;80(2):116–124. doi: 10.1139/y02-016
  32. Jauniaux E, Ayres-de-Campos D, Langhoff-Roos J, et al. FIGO classification for the clinical diagnosis of placenta accreta spectrum disorders. Int J Gynaecol Obstet. 2019;146(1):20–24. doi: 10.1002/ijgo.12761
  33. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939–958. doi: 10.1016/j.placenta.2005.12.006
  34. Moser G, Weiss G, Gauster M, et al. Evidence from the very beginning: endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro . Hum Reprod. 2015;(30):2747–2757. doi: 10.1093/humrep/dev266
  35. Burton GJ, Jauniaux E. The cytotrophoblastic shell and complications of pregnancy. Placenta. 2017;(60):134–139. doi: 10.1016/j.placenta.2017.06.007
  36. Weiss G, Sundl M, Glasner A, et al. The trophoblast plug during early pregnancy: a deeper insight. Histochem Cell Biol . 2016;(146):749–756. doi: 10.1007/s00418-016-1474-z
  37. Foidart JM, Hustin J, Dubois M, Schaaps JP. The human placenta becomes haemochorial at the 13th week of pregnancy. Int J Dev Biol. 1992;(36):451–453.
  38. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;(80):283–285.
  39. Burton GJ, Jauniaux E, Murray AJ. Oxygen and placental development; parallels and differences with tumour biology. Placenta. 2017;(56):14–18. doi: 10.1016/j.placenta.2017.01.130
  40. Brosens I, Pijnenborg R, Vercruysse L, et al. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol . 2011;204(3):193–201. doi: 10.1016/j.ajog.2010.08.009
  41. Ball E, Bulmer JN, Ayis S, et al. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol. 2006;(208):535–542. doi: 10.1002/path.1927
  42. Kanter JR, Mani S, Gordon SM, Mainigi M. Uterine natural killer cell biology and role in early pregnancy establishment and outcomes. F S Rev. 2021;2(4):265–286. doi: 10.1016/j.xfnr.2021.06.002
  43. Kanter J, Gordon SM, Mani S, et al. Hormonal stimulation reduces numbers and impairs function of human uterine natural killer cells during implantation. Hum Reprod. 2023;38(6):10471059. doi: 10.1093/humrep/dead069

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Groups of chorionic villi samples formed according to the developmental status of pregnancy, the way of conception and karyotype. ART, assisted reproductive technologies

Download (313KB)
3. Fig. 2. Diploid and tetraploid interphase nuclei from chorionic villi cells after fluorescence in situ hybridization with DNA probes specific to chromosome 13 (13q14, green) and chromosome 21 (21q22, red) and staining with DAPI (blue)

Download (96KB)
4. Fig. 3. Frequency of tetraploid cells in 4 groups of chorionic villi samples, formed according to the developmental status of pregnancy, the way of conception and karyotype: 1, arrested pregnancy, conceived with assisted reproductive technologies, normal karyotype in chorion; 2, arrested pregnancy, natural conception, normal karyotype in chorion; 3, arrested pregnancy, natural conception, trisomy 16 in chorion; 4, progressing pregnancy, natural conception, normal karyotype in chorion

Download (101KB)
5. Fig. 4. Frequency of triploid cells in 4 groups of chorionic villi samples, formed according to the developmental status of pregnancy, the way of conception and karyotype: 1, arrested pregnancy, conceived with assisted reproductive technologies, normal karyotype in chorion; 2, arrested pregnancy, natural conception, normal karyotype in chorion; 3, arrested pregnancy, natural conception, trisomy 16 in chorion; 4, progressing pregnancy, natural conception, normal karyotype in chorion

Download (104KB)
6. Fig. 5. Ratios of triploid (3n), tetraploid (4n) and octoploid (8n) cells in 4 groups of chorionic villi samples, formed according to the developmental status of pregnancy, the way of conception and karyotype: 1, arrested pregnancy, conceived with assisted reproductive technologies, normal karyotype in chorion; 2, arrested pregnancy, natural conception, normal karyotype in chorion; 3, arrested pregnancy, natural conception, trisomy 16 in chorion; 4, progressing pregnancy, natural conception, normal karyotype in chorion

Download (102KB)

Copyright (c) 2024 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».