Proteins and peptides involved in realization of the protective functions of mixed saliva: antimicrobial peptides, proline-rich proteins and peptides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mixed saliva is an important barrier preventing pathogens invasion. Despite many years of research on the protective factors of saliva, the functional significance of some of them has not yet been disclosed. The fraction of proline-rich proteins and their proteolytic fragments are the major component in mixed saliva, but the functions of these peptides still remain poorly understood. Various diseases of the oral cavity are a common problem for humans, especially for elderly patients, which undoubtedly determines the relevance of studies aimed at clarifying the role of protective molecules of the innate immunity — antimicrobial peptides and poorly studied cationic proline-rich polypeptides in the pathogenesis of these diseases. The purpose of the review is summarizing the data available in the literature revealing the molecular mechanisms of the participation of certain protein components of mixed human saliva — antimicrobial peptides (alpha- and beta-defensins, cathelicidin, histatins, etc.) and proline-rich cationic proteins and peptides (secrets of the parotid glands) in the implementation of its protective functions at normal conditions and under various types of pathology. Based on the analysis of the literature, we can conclude that when studying the biological activity of protective factors of mixed saliva, it is necessary to take into account that each of these compounds implements its effects in tight interaction with other salivary components, modulating their activity. In particular, it can be assumed that functions of proline-rich proteins and peptides of the oral fluid are largely carried out as a result of intermolecular interactions with antimicrobial peptides.

About the authors

Maria S. Sukhareva

Institute of Experimental Medicine

Email: masha.suxareva@yandex.ru
ORCID iD: 0000-0002-5351-7199
SPIN-code: 5269-4578

Junior Researcher

Russian Federation, Saint Petersburg

Olga V. Shamova

Institute of Experimental Medicine

Author for correspondence.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
SPIN-code: 2913-4726

Dr. Sci. (Biology), Сorresponding Member of RAS, Head of the Department

Russian Federation, Saint Petersburg

References

  1. Pfaffe T, Cooper-White J, Beyerlein P, et al. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57(5):675–687. doi: 10.1373/clinchem.2010.153767
  2. Messana I, Inzitari R, Fanali C, et al. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J Sep Sci. 2008;31(11):1948–1963. doi: 10.1002/jssc.200800100
  3. Bandhakavi S, Stone MD, Onsongo G, et al. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J Proteome Res. 2009;8(12):5590–5600. doi: 10.1021/pr900675w
  4. Carpenter GH. The secretion, components, and properties of saliva. Annu Rev Food Sci Technol. 2013;4:267–276. doi: 10.1146/annurev-food-030212-182700
  5. Vavilova TP, Yanushev OO, Ostrovskaya IG. Saliva. Analytical Possibilities and Prospects. Moscow: BINOM; 2014. 312 p. (In Russ.) EDN: HXNTHV
  6. Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–169. doi: 10.1067/mpr.2001.113778
  7. Butvilovskii AV, Barkovskii EV, Karmal’kova IS. Chemical bases of remineralization and demineralization of tooth enamel. Bulletin of the Vitebsk State Medical University. 2011;10(1):138–144. (In Russ.) EDN: NDXNHF
  8. Marsh PD, Do T, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontol 2000. 2016;70(1):80–92. doi: 10.1111/prd.12098
  9. Kolesov SA, Fedulova EN, Lavrova AE. Characteristics of human saliva proteome and peptidome. Human Physiology. 2016;42(4):130–136. EDN: WVVSSJ doi: 10.1134/S0362119716040058
  10. Lynge Pedersen AM, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. 2019;80 Suppl 1:S3–S12. doi: 10.1016/j.jdent.2018.08.010
  11. Schenkels LC, Veerman EC, Nieuw Amerongen AV. Biochemical composition of human saliva in relation to other mucosal fluids. Crit Rev Oral Biol Med. 1995;6(2):161–175. doi: 10.1177/10454411950060020501
  12. Hardt M, Thomas LR, Dixon SE, et al. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry. 2005;44(8):2885–2899. doi: 10.1021/bi048176r.s001
  13. Andrian E, Qi G, Wang J, et al. Role of surface proteins SspA and SspB of Streptococcus gordonii in innate immunity. Microbiology (Reading). 2012;158(Pt 8):2099–2106. doi: 10.1099/mic.0.058073-0
  14. Ambatipudi KS, Lu B, Hagen FK, et al. Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins. J Proteome Res. 2009;8(11):5093–5102. doi: 10.1021/pr900478h
  15. Cabras T, Pisano E, Montaldo C, et al. Significant modifications of the salivary proteome potentially associated with complications of Down syndrome revealed by top-down proteomics. Mol Cell Proteomics. 2013;12(7):1844–1852. doi: 10.1074/mcp.m112.026708
  16. Soares RV, Lin T, Siqueira CC, et al. Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme. Arch Oral Biol. 2004;49(5):337–343. doi: 10.1016/j.archoralbio.2003.11.007
  17. Borovskoi EV, Leont’ev VK. Biology of the oral cavity. Moscow: Meditsinskaya kniga; Nizhny Novgorod: NGMA; 2001. 304 p. (In Russ.)
  18. Zelenova EG, Zaslavskaya MI, Salina EV, Rassanov SP. Microflora of the oral cavity: norm and pathology. Nizhny Novgorod: NGMA; 2004. 158 p. (In Russ.)
  19. Shevchenko EA, Potemina TE, Kupriyanova NB, et al. Changes in the level of lysozyme, iga and siga in the oral liquid in the treatment of chronic recurrent aphthous stomatitis in different age groups of women. Modern problems of science and education. 2016;(3):133–133. EDN: WXJBGN
  20. Zaichik ASh, Churilov LP. Pathological physiology. In 3 vol. Vol. 2. 3th ed. Saint Petersburg: ELBI-SPb; 2007. 768 p.
  21. Fleisher GM. Index assessment of oral and tongue hygiene. Guide for doctors. Moscow: Izdatel’skie resheniya; 2019. 220 p. (In Russ.)
  22. Vaskovskaya GP. Erosive and ulcerative form of red squamous lichen planus of the mucous membrane of the oral cavity and red lip border. In: Proceedings of the scientific-practical conference: Problems of modern dermatology. Stavropol; 2002. P. 208–210.
  23. Bahlmann L, Frentzen M, Schroeder J, Fimmers R. Comparison of two interdental cleaning aids: A randomized clinical trial. Int J Dent Hyg. 2018;16(2):e46–e51. doi: 10.1111/idh.12298
  24. Barmes DE. A global view of oral diseases: today and tomorrow. Community Dent Oral Epidemiol. 1999;27(1):2–7. doi: 10.1111/j.1600-0528.1999.tb01985.x
  25. Castagnola M, Inzitari R, Rossetti DV, et al. A cascade of 24 histatins (histatin 3 fragments) in human saliva. Suggestions for a pre-secretory sequential cleavage pathway. J Biol Chem. 2004;279(40):41436–41443. doi: 10.1074/jbc.m404322200
  26. Vitorino R, Lobo MJ, Duarte JR, et al. The role of salivary peptides in dental caries. Biomed Chromatogr. 2005;19(3):214–222. doi: 10.1002/bmc.438
  27. Conti HR, Baker O, Freeman AF, et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 2011;4(4):448–455. doi: 10.1038/mi.2011.5
  28. White MR, Helmerhorst EJ, Ligtenberg A, et al. Multiple components contribute to ability of saliva to inhibit influenza viruses. Oral Microbiol Immunol. 2009;24(1):18–24. doi: 10.1111/j.1399-302x.2008.00468.x
  29. Oudhoff MJ, Blaauboer ME, Nazmi K, et al. The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem. 2010;391(5):541–548. doi: 10.1515/bc.2010.057
  30. Phattarataratip E, Olson B, Broffitt B, et al. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol Oral Microbiol. 2011;26(3):187–199. doi: 10.1111/j.2041-1014.2011.00607.x
  31. Imatani T, Kato T, Minaguchi K, Okuda K. Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by Porphyromonas gingivalis. Oral Microbiol Immunol. 2000;15:378–382. doi: 10.1034/j.1399-302x.2000.150607.x
  32. Devine DA, Cosseau C. Host defense peptides in the oral cavity. Adv Appl Microbiol. 2008;63:281–322. doi: 10.1016/s0065-2164(07)00008-1
  33. Dixon DR, Jeffrey NR, Dubey VS, Leung KP. Antimicrobial peptide inhibition of Porphyromonas gingivalis 381-induced hemagglutination is improved with a synthetic decapeptide. Peptides. 2009;30(12):2161–2167. doi: 10.1016/j.peptides.2009.07.027
  34. Gabay JE, Scott RW, Campanelli D, et al. Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sci USA. 1989;86(14):5610–5614. doi: 10.1073/pnas.86.24.10133-b
  35. Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol. 2010;135(1):1–11. doi: 10.1016/j.clim.2009.12.004
  36. Dale BA, Krisanaprakornkit S. Defensin antimicrobial peptides in the oral cavity. J Oral Pathol Med. 2001;30(6):321–327. doi: 10.1034/j.1600-0714.2001.300601.x
  37. Semple F, MacPherson H, Webb S, et al. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur J Immunol. 2011;41(11):3291–3300. doi: 10.1002/eji.201141648
  38. Murakami M, Ohtake T, Dorschner RA, Gallo RL. Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res. 2002;81(12):845–850. doi: 10.1177/154405910208101210
  39. Bang C, Schilhabel A, Weidenbach K, et al. Effects of antimicrobial peptides on methanogenic archaea. Antimicrob Agents Chemother. 2012;56(8):4123–4130. doi: 10.1128/aac.00661-12
  40. Overhage J, Campisano A, Bains M, et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–4182. doi: 10.1128/iai.00318-08
  41. Rudney JD, Smith QT. Relationships between levels of lysozyme, lactoferrin, salivary peroxidase, and secretory immunoglobulin A in stimulated parotid saliva. Infect Immun. 1985;49(3):469–475. doi: 10.1128/iai.49.3.469-475.1985
  42. Zaura E, Brandt BW, Prodan A, et al. On the ecosystemic network of saliva in healthy young adults. ISME J. 2017;11(5):1218–1231. doi: 10.1038/ismej.2016.199
  43. Yeh CK, Dodds MW, Zuo P, Johnson DA. A population-based study of salivary lysozyme concentrations and candidal counts. Arch Oral Biol. 1997;42(1):25–31. doi: 10.1016/s0003-9969(96)00104-5
  44. Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010;1(5):440–464. doi: 10.4161/viru.1.5.12983
  45. Zupin L, Robino A, Navarra CO, et al. LTF and DEFB1 polymorphisms are associated with susceptibility toward chronic periodontitis development. Oral Dis. 2017;23(7):1001–1008. doi: 10.1111/odi.12689
  46. Boze H, Marlin T, Durand D, et al. Proline-rich salivary proteins have extended conformations. Biophys J. 2010;99(2):656–665. doi: 10.1016/j.bpj.2010.04.050
  47. Azen EA. Genetics of salivary protein polymorphisms. Crit Rev Oral Biol Med. 1993;4(3–4):479–485. doi: 10.1177/10454411930040033201
  48. Chan M, Bennick A. Proteolytic processing of a human salivary proline-rich protein precursor by proprotein convertases. Eur J Biochem. 2001;268(12):3423–3431. doi: 10.1046/j.1432-1327.2001.02241.x
  49. Chen F, Liang Y, Zeng Z, et al. Association of increased basic salivary proline-rich protein 1 levels in induced sputum with type 2-high asthma. Immun Inflamm Dis. 2022;10(4):e602. doi: 10.1002/iid3.602
  50. Mehansho H, Butler LG, Carlson DM. Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annu Rev Nutr. 1987;7:423–440. doi: 10.1146/annurev.nu.07.070187.002231
  51. Vitali A. Proline-rich peptides: multifunctional bioactive molecules as new potential therapeutic drugs. Curr Protein Pept Sci. 2015;16(2):147–162.
  52. Roy K, Chakrabarti O, Mukhopadhyay D. Interaction of Grb2 SH3 domain with UVRAG in an Alzheimer’s disease-like scenario. Biochem Cell Biol. 2014;92(3):219–225. doi: 10.1139/bcb-2014-0001
  53. Niu Y, Shao Z, Wang H, et al. LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFβ/Smad signaling. Sci Rep. 2016;6:26112. doi: 10.1038/srep26112
  54. Kim YR, Hwang J, Koh HJ, et al. The targeted delivery of the c-Src peptide complexed with schizophyllan to macrophages inhibits polymicrobial sepsis and ulcerative colitis in mice. Biomaterials. 2016;89:1–13. doi: 10.1016/j.biomaterials.2016.02.035
  55. Raj PA, Marcus E, Edgerton M. Delineation of an active fragment and poly(L-proline) II conformation for candidacidal activity of bactenecin 5. Biochemistry. 1996;35(14):4314–4325. doi: 10.1021/bi951681r
  56. Canon F, Paté F, Cheynier V, et al. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG. Langmuir. 2013;29(6):1926–1937. doi: 10.1021/la3041715
  57. Kauffman D, Wong R, Bennick A, Keller P. Basic proline-rich proteins from human parotid saliva: complete covalent structure of protein IB-9 and partial structure of protein IB-6, members of a polymorphic pair. Biochemistry. 1982;21(25):6558–6562. doi: 10.1021/bi00268a036
  58. Kauffman D, Hofmann T, Bennick A, Keller P. Basic proline-rich proteins from human parotid saliva: complete covalent structures of proteins IB-1 and IB-6. Biochemistry. 1986;25(9):2387–2392. doi: 10.1021/bi00357a013
  59. Kauffman DL, Bennick A, Blum M, Keller PJ. Basic proline-rich proteins from human parotid saliva: relationships of the covalent structures of ten proteins from a single individual. Biochemistry. 1991;30(14):3351–3356. doi: 10.1021/bi00228a001
  60. Saitoh E, Isemura S, Sanada K. Complete amino acid sequence of a basic proline-rich peptide, P-F, from human parotid saliva. J Biochem. 1983;93(3):883–888. doi: 10.1093/jb/93.3.883
  61. Saitoh E, Isemura S, Sanada K. Further fractionation of basic proline-rich peptides from human parotid saliva and complete amino acid sequence of basic proline-rich peptide P-H. J Biochem. 1983;94(6):1991–1999. doi: 10.1093/oxfordjournals.jbchem.a134553
  62. Helmerhorst EJ, Sun X, Salih E, Oppenheim FG. Identification of Lys-Pro-Gln as a novel cleavage site specificity of saliva-associated proteases. J Biol Chem. 2008;283(29):19957–19966. doi: 10.1074/jbc.m708282200
  63. Fábián TK, Hermann P, Beck A, et al. Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci. 2012;13(4):4295–4320. doi: 10.3390/ijms13044295
  64. Righino B, Pirolli D, Radicioni G, et al. Structural studies and SH3 domain binding properties of a human antiviral salivary proline-rich peptide. Biopolymers. 2016;106(5):714–725. doi: 10.1002/bip.22889
  65. Artamonov AYu, Sukhareva MS, Kopeikin PM, et al. Effects of proline-rich peptides on the functional activity of human leukocytes in vitro. Russian Journal of Immunology. 2019;13(2–2(22)):710–712. EDN: MADASJ doi: 10.31857/S102872210006763-4
  66. Shi J, Ross CR, Leto TL, Blecha F. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl Acad Sci USA. 1996;93(12):6014–6018. doi: 10.1073/pnas.93.12.6014
  67. Kolenbrander PE, Andersen RN, Clemans DL, et al. Potential role of functionally similar coaggregation mediators in bacterial succession. Dental plaque revisited: oral biofilms in health and disease. Cardiff, United Kingdom: Bioline; 1999. P. 171–186.
  68. Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun. 1989;57(10):3194–3203. doi: 10.1128/iai.57.10.3194-3203.1989
  69. Arweiler NB, Netuschil L. The oral microbiota. Adv Exp Med Biol. 2016;902:45–60. doi: 10.1007/978-3-319-31248-4_4
  70. Marsh PD, Lewis MA, Williams D, Martin MV. Oral microbiology e-book. Elsevier health sciences; 2009. 232 p.
  71. Kilian M, Chapple IL, Hannig M, et al. The oral microbiome—an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–666. doi: 10.1038/sj.bdj.2016.865
  72. Bik EM, Long CD, Armitage GC, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4(8):962–974. doi: 10.1038/ismej.2010.30
  73. Aas JA, Paster BJ, Stokes LN, et al. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–5732. doi: 10.1128/jcm.43.11.5721-5732.2005
  74. Gao L, Xu T, Huang G, et al. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell. 2018;9(5):488–500. doi: 10.1007/s13238-018-0548-1
  75. Do T, Devine D, Marsh PD. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clin Cosmet Investig Dent. 2013;5:11–19. doi: 10.2147/ccide.s31005
  76. Hesselmar B, Sjöberg F, Saalman R, et al. Pacifier cleaning practices and risk of allergy development. Pediatrics. 2013;131(6):e1829–e1837. doi: 10.1542/peds.2012-3345
  77. Han YW, Houcken W, Loos BG, et al. Periodontal disease, atherosclerosis, adverse pregnancy outcomes, and head-and-neck cancer. Adv Dent Res. 2014;26(1):47–55. doi: 10.1177/0022034514528334
  78. Dye B, Thornton-Evans G, Li X, Iafolla T. Dental caries and tooth loss in adults in the United States, 2011-2012. NCHS Data Brief. 2015;(197):197.
  79. Petersen PE, Leous P. The burden of oral disease and risks to oral health at global and regional levels. Medicina stomatologică. 2017;42(1–2):7–13.
  80. Gorr SU, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J Clin Periodontol. 2011;38 Suppl 11:126–141. doi: 10.1111/j.1600-051x.2010.01664.x
  81. Corbella S, Veronesi P, Galimberti V, et al. Is periodontitis a risk indicator for cancer? A meta-analysis. PLoS One. 2018;13(4):e0195683. doi: 10.1371/journal.pone.0195683
  82. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80–87. doi: 10.1111/j.1600-0757.2006.00174.x
  83. Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–144. doi: 10.1111/j.1600-051x.1998.tb02419.x
  84. Diaz PI, Hoare A, Hong BY. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc. 2016;44(7):421–435.
  85. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–1820. doi: 10.1016/s0140-6736(05)67728-8
  86. Preshaw PM, Seymour RA, Heasman PA. Current concepts in periodontal pathogenesis. Dent Update. 2004;31(10):570–578. doi: 10.12968/denu.2004.31.10.570
  87. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–490. doi: 10.1038/nrmicro2337
  88. Chen C, Fan X, Yu S, et al. Association between Periodontitis and Gene polymorphisms of hBD-1 and CD14: a meta-analysis. Arch Oral Biol. 2019;104:141–149. doi: 10.1016/j.archoralbio.2019.05.029
  89. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51–59. doi: 10.1016/s0140-6736(07)60031-2
  90. Gao X, Jiang S, Koh D, Hsu CY. Salivary biomarkers for dental caries. Periodontol 2000. 2016;70(1):128–141. doi: 10.1111/prd.12100
  91. Colombo NH, Ribas LF, Pereira JA, et al. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch Oral Biol. 2016;69:40–46. doi: 10.1016/j.archoralbio.2016.05.009
  92. Davidopoulou S, Diza E, Menexes G, Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol. 2012;57(7):865–869. doi: 10.1016/j.archoralbio.2012.01.008
  93. Nishimura E, Eto A, Kato M, et al. Oral streptococci exhibit diverse susceptibility to human beta-defensin-2: antimicrobial effects of hBD-2 on oral streptococci. Curr Microbiol. 2004;48(2):85–87. doi: 10.1007/s00284-003-4108-3
  94. da Silva BR, de Freitas VA, Nascimento-Neto LG, et al. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature. Peptides. 2012;36(2):315–321. doi: 10.1016/j.peptides.2012.05.015
  95. Stojković B, Igić M, Jevtović Stoimenov T, et al. Can salivary biomarkers be used as predictors of dental caries in young adolescents? Med Sci Monit. 2020;26:e923471. doi: 10.12659/msm.923471
  96. Ng JH, Iyer NG, Tan MH, Edgren G. Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study. Head Neck. 2017;39(2):297–304. doi: 10.1002/hed.24589
  97. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492 Erratum in: CA Cancer J Clin. 2020;70(4):313. doi: 10.3322/caac.21609
  98. Hase K, Murakami M, Iimura M, et al. Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology. 2003;125(6):1613–1625. doi: 10.1053/j.gastro.2003.08.028
  99. Frohm Nilsson M, Sandstedt B, Sørensen O, et al. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun. 1999;67(5):2561–2566. doi: 10.1128/iai.67.5.2561-2566.1999
  100. Chen X, Qi G, Qin M, et al. DNA methylation directly downregulates human cathelicidin antimicrobial peptide gene (CAMP) promoter activity. Oncotarget. 2017;8(17):27943–27952. doi: 10.18632/oncotarget.15847
  101. Vierthaler M, Rodrigues PC, Sundquist E, et al. Fluctuating role of antimicrobial peptide hCAP18/LL-37 in oral tongue dysplasia and carcinoma. Oncol Rep. 2020;44(1):325–338. doi: 10.3892/or.2020.7609
  102. Dale BA, Fredericks LP. Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol. 2005;7(2):119–133. doi: 10.21775/cimb.007.119
  103. Joly S, Maze C, McCray PB Jr, Guthmiller JM. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol. 2004;42(3):1024–1029. doi: 10.1128/jcm.42.3.1024-1029.2004
  104. Silva ON, Porto WF, Ribeiro SM, et al. Host-defense peptides and their potential use as biomarkers in human diseases. Drug Discov Today. 2018;23(9):1666–1671. doi: 10.1016/j.drudis.2018.05.024
  105. Prasad SV, Fiedoruk K, Daniluk T, et al. Expression and function of host defense peptides at inflammation sites. Int J Mol Sci. 2019;21(1):104. doi: 10.3390/ijms21010104
  106. Dommisch H, Açil Y, Dunsche A, et al. Differential gene expression of human beta-defensins (hBD-1, -2, -3) in inflammatory gingival diseases. Oral Microbiol Immunol. 2005;20(3):186–190. doi: 10.1111/j.1399-302x.2005.00211.x
  107. Krisanaprakornkit S, Kimball JR, Weinberg A, et al. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun. 2000;68(5):2907–2915. doi: 10.1128/iai.68.5.2907-2915.2000
  108. Wang P, Duan D, Zhou X, et al. Relationship between expression of human gingival beta-defensins and levels of periodontopathogens in subgingival plaque. J Periodontal Res. 2015;50(1):113–122. doi: 10.1111/jre.12187
  109. Zhu M, Miao B, Zhu J, et al. Expression and antimicrobial character of cells transfected with human β-defensin-3 against periodontitis-associated microbiota in vitro. Mol Med Rep. 2017;16(3):2455–2460. doi: 10.3892/mmr.2017.6913
  110. Li X, Duan D, Yang J, et al. The expression of human β-defensins (hBD-1, hBD-2, hBD-3, hBD-4) in gingival epithelia. Arch Oral Biol. 2016;66:15–21. doi: 10.1016/j.archoralbio.2016.01.012
  111. Sidharthan S, Dharmarajan G, Kulloli A. Gingival crevicular fluid levels of Interleukin-22 (IL-22) and human β Defensin-2 (hBD-2) in periodontal health and disease: A correlative study. J Oral Biol Craniofac Res. 2020;10(4):498–503. doi: 10.1016/j.jobcr.2020.07.021
  112. Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol. 2019;88:163–172. doi: 10.1016/j.semcdb.2018.02.023
  113. Polesello V, Zupin L, Di Lenarda R, et al. Impact of DEFB1 gene regulatory polymorphisms on hBD-1 salivary concentration. Arch Oral Biol. 2015;60(7):1054–1058. doi: 10.1016/j.archoralbio.2015.03.009
  114. Polesello V, Zupin L, Di Lenarda R, et al. DEFB1 polymorphisms and salivary hBD-1 concentration in Oral Lichen Planus patients and healthy subjects. Arch Oral Biol. 2017;73:161–165. doi: 10.1016/j.archoralbio.2016.10.008
  115. Joly S, Compton LM, Pujol C, et al. Loss of human beta-defensin 1, 2, and 3 expression in oral squamous cell carcinoma. Oral Microbiol Immunol. 2009;24(5):353–360. doi: 10.1111/j.1399-302x.2009.00512.x
  116. Zupin L, Polesello V, Martinelli M, et al. Human β-defensin 1 in follicular fluid and semen: impact on fertility. J Assist Reprod Genet. 2019;36(4):787–797. doi: 10.1007/s10815-019-01409-w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».