Myeloperoxidase activity affects the high-density lipoprotein cholesterol level and the course of chronic coronary heart disease in patients with arterial hypertension

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Coronary heart disease is one of the leading causes of death and disability worldwide. Myeloperoxidase plays the key role in its pathogenesis. Oxidative modification of high-density lipoprotein particles by myeloperoxidase followed by impaired reverse cholesterol transport and the decrease of high-density lipoprotein cholesterol level results in atherosclerosis progression. We studied the effect of myeloperoxidase on reverse cholesterol transport among patients with arterial hypertension and different clinical forms of chronic coronary heart disease, judging by findings in blood plasma.

AIM: The ultimate goal was to establish whether that effect is associated with the total amount of myeloperoxidase or its activity.

METHODS: 93 patients were recruited (65.4 ± 10.1 years old in average; men — 30 (32%)) with arterial hypertension and different clinical forms of chronic coronary heart disease. Depending on the diagnosis established, all participants were divided into 3 groups. Group I (control) contained patients with arterial hypertension, but without chronic coronary heart disease (n = 46). Group II (n = 26) included patients with initially stable coronary syndromes of chronic coronary heart disease (stable angina and/or scheduled surgical interventions for stable coronary heart disease), who never experienced acute adverse cardiac events. Group III (n = 21) contained patients with acute coronary syndrome (acute myocardial infarction) in the past 6 months or earlier. The total myeloperoxidase content (MPO-T) was assayed by enzyme-linked immunosorbent assay (ELISA). Home-modified specific immune-extraction followed by enzymatic detection (SIEFED) test was used to measure the active myeloperoxidase (MPO-A). Then, the coefficient of myeloperoxidase activity (MPO-CA) and the ratio of coefficient of myeloperoxidase activity to high-density lipoprotein cholesterol (MPO-CA/HDL-C) were calculated.

RESULTS: The level of MPO-A was higher in patients from group III with complicated form of chronic coronary heart disease, as compared with group II (p < 0.05). MPO-CA in patients of group III also was higher in comparison with group II (p = 0.001). Weak positive correlation was found between MPO-T and MPO-A in the whole cohort under investigation (r = 0.26; p < 0.05), and the relationship was stronger in the group III (r = 0.59; p < 0.05). In addition, negative correlation between MPO-A and HDL-C was found in group III (r = –0.46; p < 0.05). The MPO-CA/HDL-C ratio was higher in patients with anamnestic acute coronary syndrome, as compared with patients manifesting non-complicated stable coronary heart disease (p < 0.001) and with patients of group I who had no coronary heart disease (p < 0.001). To determine diagnostic value of the MPO-CA/HDL-C the receiver operating characteristic curve (ROC-curve) was plotted. The calculated area under curve (AUC) was 0.8 which indicates a high predictive value of the MPO-CA/HDL-C ratio for different forms of chronic coronary heart disease.

CONCLUSION: The results of our study demonstrate that in patients with preceding history of acute coronary syndrome, as compared with those having a stable course of chronic coronary heart disease, the effect of myeloperoxidase on reverse cholesterol transport depends on its activity rather than concentration. MPO-CA/HDL-C ratio mirrors the complicated chronic coronary heart disease and might serve as an additional indicator of residual risk.

About the authors

Irina A. Churashova

Institute of Experimental Medicine

Email: asyl@list.ru
ORCID iD: 0000-0001-8064-6861
SPIN-code: 5916-3140

Researcher at the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Alexey V. Sokolov

Institute of Experimental Medicine

Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395

Dr. Sci. (Biology), Professor, Head of the Laboratory of Biochemical Genetics of the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Valeria A. Kostevich

Institute of Experimental Medicine

Email: hfa-2005@yandex.ru
ORCID iD: 0000-0002-1405-1322
SPIN-code: 2726-2921

Cand. Sci. (Biology), Senior Researcher of the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Nikolay P. Gorbunov

Institute of Experimental Medicine

Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281

Researcher of the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Tatyana V. Baranova

Institute of Experimental Medicine

Email: tanjabaranova@mail.ru
ORCID iD: 0000-0002-8269-8881
SPIN-code: 1356-1402

Cand. Sci. (Biology), Junior Researcher of the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Elvira M. Firova

Institute of Experimental Medicine

Email: Firova@yandex.ru

MD, Cand. Sci. (Medicine), Head of the Department of Cardiology, Cardiologist at the Clinic

Russian Federation, Saint Petersburg

Mikhail Yu. Mandelstam

Institute of Experimental Medicine

Email: amitinus@mail.ru
ORCID iD: 0000-0002-7135-3239
SPIN-code: 1893-9417

Dr. Sci. (Biology), Leading Researcher at the Department of Molecular Genetics

Russian Federation, Saint Petersburg

Vadim B. Vasilyev

Institute of Experimental Medicine

Author for correspondence.
Email: vadim@biokemis.ru
ORCID iD: 0000-0002-9707-262X
SPIN-code: 6699-6350

MD, Dr. Sci. (Medicine), Professor, Head of the Department of Molecular Genetics

Russian Federation, Saint Petersburg

References

  1. WHO reveals leading causes of death and disability worldwide: 2000-2019 [Internet]. Available from: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019. Accessed: 27 Dec 2024.
  2. Delporte C, Van Antwerpen P, Vanhamme L, et al. Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediators Inflamm. 2013;2013:971579. doi: 10.1155/2013/971579
  3. Sokolov AV, Kostevich VA, Runova OL, et al. Proatherogenic modification of LDL by surface-bound myeloperoxidase. Chem Phys Lipids. 2014;180:72–80. doi: 10.1016/j.chemphyslip.2014.02.006
  4. Ismael FO, Proudfoot JM, Brown BE, et al. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis. Arch Biochem Biophys. 2015;573:40–51. doi: 10.1016/j.abb.2015.03.008
  5. Abdo AI, Rayner BS, van Reyk DM, Hawkins CL. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction. Redox Biol. 2017;13:623–632. doi: 10.1016/j.redox.2017.08.004
  6. Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The role of halogenative stress in atherogenic modification of low-density lipoproteins. Biochemistry (Mosc). 2020;85(Suppl 1):S34–S55. EDN: EZKLSR doi: 10.1134/S0006297920140035
  7. Teng N, Maghzal GJ, Talib J, et al. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. 2017;22(2):51–73. doi: 10.1080/13510002.2016.1256119
  8. Zheng L, Nukuna B, Brennan M-L, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004;114(4):529–541. doi: 10.1172/jci21109
  9. Nicholls SJ, Zheng L, Hazen SL. Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc Med. 2005;15(6):212–219. doi: 10.1016/j.tcm.2005.06.004
  10. Malle E, Marsche G, Panzenboeck U, Sattler W. Myeloperoxidase-mediated oxidation of high-density lipoproteins: Fingerprints of newly recognized potential proatherogenic lipoproteins. Arch Biochem Biophys. 2006;445(2):245–255. doi: 10.1016/j.abb.2005.08.008
  11. Urundhati A, Huang Y, Lupica JA, et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem. 2009;284(45):30825–30835. doi: 10.1074/jbc.M109.047605
  12. Smith JD. Myeloperoxidase, inflammation, and dysfunctional HDL. J Clin Lipidol. 2010;4(5):382–388. doi: 10.1016/j.jacl.2010.08.007
  13. Shao B, Tang C, Sinha A, et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res. 2014;114(11):1733–1742. doi: 10.1161/CIRCRESAHA.114.303454
  14. Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport: Basic mechanisms and their roles in vascular health and disease. Circ Res. 2019;124(10):1505–1518. doi: 10.1161/CIRCRESAHA.119.312617
  15. Cai H, Chuang CY, Hawkins CL, Davies MJ. Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Sci Rep. 2020;10(1):666. doi: 10.1038/S41598-019-57299-6
  16. Cheng D, Talib J, Stanley CP, et al. Inhibition of MPO (myeloperoxidase) attenuates endothelial dysfunction in mouse models of vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(7):1448–1457. doi: 10.1161/ATVBAHA.119.312725
  17. Zhang R, Brennan ML, Fu X, et al. Association between myeloperoxidase levels and risk of coronary artery disease. J Am Med Assoc. 2001;286(17):2136–2142. doi: 10.1001/jama.286.17.2136
  18. Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349(17):1595–1604. doi: 10.1056/NEJMoa035003
  19. Baldus S, Heeschen C, Meinertz T, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 2003;108(12):1440–1445. doi: 10.1161/01.CIR.0000090690.67322.51
  20. Tang WHW, Wu Y, Nicholls SJ, Hazen SL. Plasma myeloperoxidase predicts incident cardiovascular risks in stable patients undergoing medical management for coronary artery disease. Clin Chem. 2011;57(1):33–39. doi: 10.1373/CLINCHEM.2010.152827
  21. Panasenko OM, Gorudko IV, Kostevich VA, et al. Selective increase in the concentration and activity of neutrophil azurophilic granule marker myelperoxidase in blood of patients with type 2 diabetes mellitus with complications of ischemic heart disease. Efferentnaya i fiziko-khimicheskaya meditsina. 2012;1:25–29. (In Russ.) EDN: OYWISX
  22. Gach O, Brogneaux C, Franck T, et al. Active and total myeloperoxidase in coronary artery disease and relation to clinical instability. Acta Cardiol. 2015;70(5):522–527. doi: 10.2143/AC.70.5.3110512
  23. Grigorieva DV, Gorudko IV, Kostevich VA, et al. Plasma myeloperoxidase activity as a criterion of therapeutic effectiveness for patients with cardiovascular diseases. Biochem. Moscow Suppl. Ser. B. 2016;10(2):173–179. EDN: WUQVEV doi: 10.1134/S1990750816020050
  24. Bunenkov NS, Komok VV, Sokolov AV, Nemkov AS. New methods of intraoperative evaluation of myocardial ischemic-reperfusion injury during on and off-pump coronary artery bypass grafting. Clinical and experimental surgery. Petrovsky journal. 2017;5(2(16)):40–48. EDN: YZBGQH doi: 10.24411/2308-1198-2017-00032
  25. Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Mosc). 2013;78(13):1466–1489. doi: 10.1134/S0006297913130075
  26. Arnhold J. The dual role of myeloperoxidase in immune response. Int J Mol Sci. 2020;21(21):8057. doi: 10.3390/ijms21218057
  27. Davies MJ, Hawkins CL. The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid Redox Signal. 2020;32(13):957–981. doi: 10.1089/ARS.2020.8030
  28. Vakhrusheva TV, Grigorieva DV, Gorudko IV, et al. Enzymatic and bactericidal activity of myeloperoxidase in conditions of halogenative stress. Biochem Cell Biol. 2018;96(5):580–591. doi: 10.1139/bcb-2017-0292
  29. Astern JM, Pendergraft WF, Falk RJ, et al. Myeloperoxidase interacts with endothelial cell-surface cytokeratin 1 and modulates bradykinin production by the plasma Kallikrein-Kinin system. Am J Pathol. 2007;171(1):349–360. doi: 10.2353/AJPATH.2007.060831
  30. Gorudko IV, Sokolov AV, Shamova EV, et al. Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level. Arch Biochem Biophys. 2016;591:87–97. doi: 10.1016/j.abb.2015.12.007
  31. Grigorieva DV, Gorudko IV, Sokolov AV, et al. Myeloperoxidase stimulates neutrophil degranulation. Bull Exp Biol Med. 2016;161(4):495–500. doi: 10.1007/s10517-016-3446-7
  32. Sokolov AV, Ageeva KV, Pulina MO, et al. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res. 2008;42(11–12):989–998. doi: 10.1080/10715760802566574
  33. Sokolov AV, Ageeva KV, Cherkalina OS, et al. Identification and properties of complexes formed by myeloperoxidase with lipoproteins and ceruloplasmin. Chem Phys Lipids. 2010;163(4–5):347–355. doi: 10.1016/J.CHEMPHYSLIP.2010.02.002
  34. Gorudko IV, Grigorieva DV, Shamova EV, et al. Structure-biological activity relationships of myeloperoxidase to effect on platelet activation. Arch Biochem Biophys. 2022;728:109353. doi: 10.1016/j.abb.2022.109353
  35. Huang Y, Wu Z, Riwanto M, et al. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest. 2013;123(9):3815–3828. doi: 10.1172/JCI67478
  36. Maitra D, Shaeib F, Abdulhamid I, et al. Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med. 2013;63:90–98. doi: 10.1016/j.freeradbiomed.2013.04.009
  37. Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99(9):2075–2081. doi: 10.1172/JCI119379
  38. Malle E, Marsche G, Arnhold J, Davies MJ. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta. 2006;1761(4):392–415. doi: 10.1016/j.bbalip.2006.03.024
  39. Afshinnia F, Zeng L, Byun J, et al. Myeloperoxidase levels and its product 3-chlorotyrosine predict chronic kidney disease severity and associated coronary artery disease. Am J Nephrol. 2017;46(1):73–81. doi: 10.1159/000477766
  40. Sokolov AV, Kostevich VA, Gorbunov NP, et al. A link between active myeloperoxidase and chlorinated ceruloplasmin in blood plasma of patients with cardiovascular diseases. Medical Immunology (Russia). 2018;20(5):699–710. EDN: YLTKTR doi: 10.15789/1563-0625-2018-5-699-710
  41. Trentini A, Rosta V, Spadaro S, et al. Development, optimization and validation of an absolute specific assay for active myeloperoxidase (MPO) and its application in a clinical context: Role of MPO specific activity in coronary artery disease. Clin Chem Lab Med. 2020;58(10):1749–1758. doi: 10.1515/cclm-2019-0817
  42. Haraguchi Y, Toh R, Hasokawa M, et al. Serum myeloperoxidase/paraoxonase 1 ratio as potential indicator of dysfunctional high-density lipoprotein and risk stratification in coronary artery disease. Atherosclerosis. 2014;234(2):288–294. doi: 10.1016/j.atherosclerosis.2014.03.009
  43. Khine HW, Teiber JF, Haley RW, et al. Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: Observations from the Dallas Heart Study. Atherosclerosis. 2017;263:156–162. doi: 10.1016/j.atherosclerosis.2017.06.007
  44. Kimak E, Zięba B, Duma D, Solski J. Myeloperoxidase level and inflammatory markers and lipid and lipoprotein parameters in stable coronary artery disease. Lipids Health Dis. 2018;17(1):71. doi: 10.1186/s12944-018-0718-4
  45. Sokolov AV, Gorbunov NP, Kostevich VA, Panasenko OM. Characteristics and prospects of using monoclonal antibodies against myeloperoxidase. Bioradicals and Antioxidants. 2018;5(3):65–66. (In Russ.) EDN: YLAKHB
  46. Li S, Peng Y, Wang X, et al. Cardiovascular events and death after myocardial infarction or ischemic stroke in an older Medicare population. Clin Cardiol. 2019;42(3):391–399. doi: 10.1002/clc.23160
  47. Acharjee S, Boden WE, Hartigan PM, et al. Low levels of high-density lipoprotein cholesterol and increased risk of cardiovascular events in stable ischemic heart disease patients: A post-hoc analysis from the COURAGE trial (clinical outcomes utilizing revascularization and aggressive drug evaluation). J Am Coll Cardiol. 2013;62(20):1826–1833. doi: 10.1016/j.jacc.2013.07.051
  48. Churashova IA, Sokolov AV, Kostevich VA, et al. Myeloperoxidase/high-density lipoprotein cholesterol ratio in patients with arterial hypertension and chronic coronary heart disease. Medical Academic Journal. 2021;21(2):75–86. EDN: PLCEQJ doi: 10.17816/MAJ71486
  49. Exner M, Minar E, Mlekusch W, et al. Myeloperoxidase predicts progression of carotid stenosis in states of low high-density lipoprotein cholesterol. J Am Coll Cardiol. 2006;47(11):2212–2218. doi: 10.1016/j.jacc.2006.01.067

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relationships between MPO-T, MPO-A and HDL-C. a, Scatter plot of correlation between MPO-T and MPO-A in all groups. b, Scatter plot of correlation between MPO-T and MPO-A in group III. c, Scatter plot of correlation between MPO-T/HDL-C ratio and MPO-A/HDL-C ratio in all groups. d, Scatter plot of correlation between MPO-T/HDL-C ratio and MPO-A/HDL-C ratio in group III. MPO-T, total myeloperoxidase; MPO-A, active myeloperoxidase; MPO-T/HDL-C, the ratio of total myeloperoxidase to high-density lipoprotein cholesterol; MPO-A/HDL-C, the ratio of active myeloperoxidase to high-density lipoprotein cholesterol.

Download (346KB)
3. Fig. 2. Box plot of MPO-CA/HDL-C ratio comparison among the groups. The data are represented as median, interquartile range, minimum and maximum values. Statistical significance of the Kruskal–Wallis H test for multiple comparison, p < 0.001. MPO-CA/HDL-C, the ratio of coefficient of myeloperoxidase activity to high-density lipoprotein cholesterol.

Download (73KB)
4. Fig. 3. The results of ROC analysis of the MPO-CA/HDL-C ratio among the patients with different clinical forms of chronic coronary heart disease. ROC, receiver operating characteristic; AUC, area under curve; MPO-CA/HDL-C, the ratio of coefficient of myeloperoxidase activity to high-density lipoprotein cholesterol.

Download (87KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».