Characteristics of the functional state of peripheral blood neutrophils in patients with luminal breast cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Neutrophils are essential in tumor growth, and their functional state can serve as a prognostic biomarker. However, the functional characteristics of peripheral blood neutrophils, such as chemotaxis and predisposition to NETosis, in female patients with luminal breast cancer have not been sufficiently explored. Studying these parameters may provide new insights into the mechanisms of disease progression and response to therapy.

AIM: This work aimed to analyze the chemotactic activity of neutrophils and predisposition to NETosis in blood samples of female patients with locally advanced luminal breast cancer undergoing treatment (neoadjuvant chemotherapy) at the Loginov Moscow Clinical Scientific Center.

METHODS: The study was conducted on blood samples from six patients with stage 3 luminal B, HER2-negative breast cancer before and 2 months after the start of antitumor therapy. Blood samples from healthy adult volunteers were used as controls. The work was performed using fluorescence microscopy methods for neutrophil chemotaxis with the growth of blood clots and the number of extracellular DNA traps of neutrophils by reaction with Hoechst 33342 and antibodies against myeloperoxidase and neutrophil elastase in smears of blood plasma rich in leukocytes.

RESULTS: Before the start of neoadjuvant therapy, the level of NETosis is significantly increased (30% ± 14% versus 4.6% ± 3.4% in healthy donors), whereas most female patients undergoing therapy experience its reduction (17% ± 17%). The speed of neutrophil movement is increased in some female patients (0.17 ± 0.06 versus 0.113 ± 0.009 μm/s in healthy donors) and goes down during therapy (0.10 ± 0.03 μm/s). At the same time, the number of neutrophils associated with blood clots decreases during therapy (25 ± 18 versus 61 ± 23) even in patients with neutrophilia.

CONCLUSION: It has been demonstrated for the first time that in female patients with luminal B, HER2-negative breast cancer, the neutrophil chemotaxis speed deviates from the standard; at the same time, their adhesion is reduced, and peripheral blood neutrophils are significantly more predisposed to NETosis than in healthy donors.

About the authors

Julia Jessica D. Korobkina

Center for Theoretical Problems of Physico-Chemical Pharmacology RAS

Email: juliajessika@gmail.com
ORCID iD: 0000-0002-2762-5460
SPIN-code: 6630-3657
Russian Federation, Moscow

Ekaterina-Iva A. Adamanskaya

Center for Theoretical Problems of Physico-Chemical Pharmacology RAS; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology

Email: ka.09@mail.ru
ORCID iD: 0009-0000-4828-4063
SPIN-code: 9633-1147
Russian Federation, Moscow; Moscow

Natalya I. Polshina

Loginov Moscow Clinical Scientific Center

Email: npolshina@yandex.ru
ORCID iD: 0000-0001-5417-0425

MD

Russian Federation, Moscow

Sofia V. Galkina

Center for Theoretical Problems of Physico-Chemical Pharmacology RAS; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology

Email: s_v_galkina@rambler.ru
ORCID iD: 0009-0006-6321-4489
Russian Federation, Moscow; Moscow

Timur I. Kadyrov

Center for Theoretical Problems of Physico-Chemical Pharmacology RAS

Email: kadyrov.ti17@physics.msu.ru
ORCID iD: 0009-0005-0130-1758
Russian Federation, Moscow

Nikolay P. Gorbunov

Institute for Experimental Medicine

Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281
Russian Federation, Saint Petersburg

Alexey V. Sokolov

Institute for Experimental Medicine

Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

Lyudmila G. Zhukova

Loginov Moscow Clinical Scientific Center

Email: zhukova.lyudmila008@mail.ru
ORCID iD: 0000-0003-4848-6938
SPIN-code: 2177-6476

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Anastasia N. Sveshnikova

Center for Theoretical Problems of Physico-Chemical Pharmacology RAS; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology

Author for correspondence.
Email: ASve6nikova@yandex.ru
ORCID iD: 0000-0003-4720-7319
SPIN-code: 7893-4627

Dr. Sci. (Physics and Mathematics)

Russian Federation, Moscow; Moscow

References

  1. Singh N, Baby D, Rajguru J, et al. Inflammation and cancer. Ann Afr Med. 2019;18(3):121–126. doi: 10.4103/aam.aam_56_18
  2. Doshi AS, Asrani KH. Innate and adaptive immunity in cancer. In: Cancer Immunology and Immunotherapy. Elsevier, 2022. P. 19–61.
  3. Wu M, Ma M, Tan Z, et al. Neutrophil: a new player in metastatic cancers. Front Immunol. 2020;11:565165. doi: 10.3389/fimmu.2020.565165
  4. Arpinati L, Shaul ME, Kaisar-Iluz N, et al. NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice. Cancer Immunol Immunother. 2020;69(2):199–213. doi: 10.1007/s00262-019-02474-x
  5. Galdiero MR, Bianchi P, Grizzi F, et al. Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Intl J Cancer. 2016;139(2):446–456. doi: 10.1002/ijc.30076
  6. Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–194. doi: 10.1016/j.ccr.2009.06.017
  7. Schaider H, Oka M, Bogenrieder T, et al. Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. Int J Cancer. 2003;103(3):335–343. doi: 10.1002/ijc.10775
  8. Musiani P, Allione A, Modica A, et al. Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Lab Invest. 1996;74(1):146–157.
  9. Cupp MA, Cariolou M, Tzoulaki I, et al. Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020;18(1):360. doi: 10.1186/s12916-020-01817-1
  10. Taucher E, Taucher V, Fink-Neuboeck N, et al. Role of tumor-associated neutrophils in the molecular carcinogenesis of the lung. Cancers. 2021;13:5972. doi: 10.3390/cancers13235972
  11. Jin L, Kim HS, Shi J. Neutrophil in the pancreatic tumor microenvironment. Biomolecules. 2021;11:1170. doi: 10.3390/biom11081170
  12. Margaroli C, Cardenas MA, Jansen CS, et al. The immunosuppressive phenotype of tumor-infiltrating neutrophils is associated with obesity in kidney cancer patients. OncoImmunology. 2020;9(1):1747731. doi: 10.1080/2162402X.2020.1747731
  13. Cerezo-Wallis D, Ballesteros I. Neutrophils in cancer, a love-hate affair. FEBS J. 2022;289(13):3692–3703. doi: 10.1111/febs.16022
  14. Shaul ME, Fridlender ZG. Cancer-related circulating and tumor-associated neutrophils – subtypes, sources and function. FEBS J. 2018;285(23):4316–4342. doi: 10.1111/febs.14524
  15. Gungabeesoon J, Gort-Freitas NA, Kiss M, et al. A neutrophil response linked to tumor control in immunotherapy. Cell. 2023;186(7):1448–1464.e20. doi: 10.1016/j.cell.2023.02.032
  16. Sveshnikova AN, Adamanskaya EA, Panteleev MA. Conditions for the implementation of the phenomenon of programmed death of neutrophils with the appearance of DNA extracellular traps during thrombus formation. Pediatric Hematology/Oncology and Immunopathology. 2024;23(1):211–218. EDN: UQHWLZ doi: 10.24287/1726-1708-2024-23-1-211-218
  17. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147. doi: 10.1038/nri.2017.105
  18. Sveshnikova AN, Adamanskaya EA, Korobkina Yu-DD, Panteleev MA. Intracellular signaling involved in the programmed neutrophil cell death leading to the release of extracellular DNA traps in thrombus formation. Pediatric Hematology/Oncology and Immunopathology. 2024;23(2):222–230. doi: 10.24287/1726-1708-2024-23-2-222-230
  19. Shahzad MH, Feng L, Su X, et al. Neutrophil extracellular traps in cancer therapy resistance. Cancers (Basel). 2022;14(5):1359. doi: 10.3390/cancers14051359
  20. Martins-Cardoso K, Almeida VH, Bagri KM, et al. Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial-mesenchymal transition. Cancers (Basel). 2020;12(6):1542. doi: 10.3390/cancers12061542
  21. Poto R, Cristinziano L, Modestino L, et al. Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines. 2022;10:431. doi: 10.3390/biomedicines10020431
  22. Gao F, Feng Y, Hu X, et al. Neutrophils regulate tumor angiogenesis in oral squamous cell carcinoma and the role of Chemerin. Int Immunopharmacol. 2023;121:110540. doi: 10.1016/j.intimp.2023.110540
  23. Kaltenmeier C, Yazdani HO, Morder K, et al. Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 2021;12:785222. doi: 10.3389/fimmu.2021.785222
  24. Cives M, Pelle’ E, Quaresmini D, et al. The tumor microenvironment in neuroendocrine tumors: biology and therapeutic implications. Neuroendocrinology. 2019;109(2):83–99. doi: 10.1159/000497355
  25. Kou M, Lu W, Zhu M, et al. Massively recruited sTLR9+ neutrophils in rapidly formed nodules at the site of tumor cell inoculation and their contribution to a pro-tumor microenvironment. Cancer Immunol Immunother. 2023;72(8):2671–2686. doi: 10.1007/s00262-023-03451-1
  26. Mizuno R, Kawada K, Itatani Y, et al. The role of tumor-associated neutrophils in colorectal cancer. IJMS. 2019;20(3):529. doi: 10.3390/ijms20030529
  27. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  28. Howlader N, Altekruse SF, Li CI, et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 2014;106(5):dju055. doi: 10.1093/jnci/dju055
  29. Soto-Perez-de-Celis E, Chavarri-Guerra Y, Leon-Rodriguez E, Gamboa-Dominguez A. Tumor-associated neutrophils in breast cancer subtypes. Asian Pac J Cancer Prev. 2017;18(10):2689–2694. doi: 10.22034/APJCP.2017.18.10.2689
  30. Sheng Y, Peng W, Huang Y, et al. Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. J Leukoc Biol. 2023;113(4):383–399. doi: 10.1093/jleuko/qiad004
  31. Morozova DS, Martyanov AA, Obydennyi SI, et al. Ex vivo observation of granulocyte activity during thrombus formation. BMC Biol. 2022;20(1):32. doi: 10.1186/s12915-022-01238-x
  32. Korobkin JD, Deordieva EA, Tesakov IP, et al. Dissecting thrombus-directed chemotaxis and random movement in neutrophil near-thrombus motion in flow chambers. BMC Biol. 2024;22(1):115. doi: 10.1186/s12915-024-01912-2
  33. Adamanskaya EA, Yushkova EB, Fedorova DV, et al. Methodology for observing neutrophil DNA traps in blood samples of pediatric patients. In: Collection of abstracts of the XXIV congress of the I. P. Pavlov Physiological Society. Saint Petersburg; 2023. P. 127. EDN: WZIHSV (In Russ.)
  34. Sokolov AV, Ageeva KV, Kostevich VA, et al. Study of interaction of ceruloplasmin with serprocidins. Biochemistry (Moscow). 2010;75(11):1361–1367. EDN: OACVTD doi: 10.1134/S0006297910110076
  35. Sokolov AV, Acquasaliente L, Kostevich VA, et al. Thrombin inhibits the anti-myeloperoxidase and ferroxidase functions of ceruloplasmin: relevance in rheumatoid arthritis. Free Radic Biol Med. 2015;86:279–294. doi: 10.1016/j.freeradbiomed.2015.05.016
  36. Groblewska M, Mroczko B, Wereszczyńska-Siemiątkowska U, et al. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin Chem Lab Med. 2007;45(1):30–34. doi: 10.1515/CCLM.2007.025
  37. Schoergenhofer C, Schwameis M, Wohlfarth P, et al. Granulocyte colony-stimulating factor (G-CSF) increases histone-complexed DNA plasma levels in healthy volunteers. Clin Exp Med. 2017;17(2):243–249. doi: 10.1007/s10238-016-0413-6
  38. Xu Q, Zhao W, Yan M, Mei H. Neutrophil reverse migration. J Inflamm (Lond). 2022;19(1):22. doi: 10.1186/s12950-022-00320-z
  39. Patel S, Fu S, Mastio J, et al. Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol. 2018;19:1236–1247. doi: 10.1038/s41590-018-0229-5
  40. Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci. 2018;117(13):7326–7337. doi: 10.1073/pnas.1909546117
  41. Thålin C, Lundström S, Seignez C, et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One. 2018;13:e0191231. doi: 10.1371/journal.pone.0191231
  42. Krishnan J, Hennen EM, Ao M, et al. NETosis drives blood pressure elevation and vascular dysfunction in hypertension. Circ Res. 2024;134(11):1483–1494. doi: 10.1161/CIRCRESAHA.123.323897
  43. Li J-H, Tong D-X, Wang Y, et al. Neutrophil extracellular traps exacerbate coagulation and endothelial damage in patients with essential hypertension and hyperhomocysteinemia. Thromb Res. 2021;197:36–43. doi: 10.1016/j.thromres.2020.10.028
  44. Liu S, Wu W, Du Y, et al. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Mol Cancer. 2023;22:148. doi: 10.1186/s12943-023-01843-6
  45. Tamura M, Hattori K, Nomura H, et al. Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun. 1987;142(2):454–460. doi: 10.1016/0006-291X(87)90296-8
  46. Jun HS, Lee YM, Song KD, et al. G-CSF improves murine G6PC3-deficient neutrophil function by modulating apoptosis and energy homeostasis. Blood. 2011;117(14):3881–3892. doi: 10.1182/blood-2010-08-302059
  47. Yang Y, Yang J, Li L, et al. Neutrophil chemotaxis score and chemotaxis-related genes have the potential for clinical application to prognosticate the survival of patients with tumours. BMC Cancer. 2024;24:1244. doi: 10.1186/s12885-024-12993-1
  48. Sagiv JY, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–573. doi: 10.1016/j.celrep.2014.12.039
  49. Koyama S, Takamizawa A, Sato E, et al. Cyclophosphamide stimulates lung fibroblasts to release neutrophil and monocyte chemoattractants. Am J Physiol Lung Cell Mol Physiol. 2001;280(6):L1203–L1211. doi: 10.1152/ajplung.2001.280.6.L1203
  50. Palukuri NR, Yedla RP, Bala SC, et al. Incidence of febrile neutropenia with commonly used chemotherapy regimen in localized breast cancer. South Asian J Cancer. 2020;9(1):4–6. doi: 10.4103/sajc.sajc_439_18
  51. Katsifis GE, Tzioufas AG, Vlachoyiannopoulos PG, et al. Risk of myelotoxicity with intravenous cyclophosphamide in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2002;41(7):780–786. doi: 10.1093/rheumatology/41.7.780

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supporting Figures
Download (711KB)
3. Supporting Video 1
Download (6MB)
4. Supporting Video 2
Download (6MB)
5. Fig. 1. Observation of NETosis in blood plasma smears. а, means a proportion of NETotic neutrophils. The Mann–Whitney criterion was used for comparison with healthy donors: **p < 0.01, ***p < 0.001. There is no statistically significant difference between the first and second points (according to the Wilcoxon signed-rank test when comparing without ЗCA, p = 0.06). The ratio of NETosis at the first (b) and second (c) study points. ЗД means a group of healthy donors (n = 8). ЗСА, МЮИ, МЕГ, МАА, КЕА, МСЕ are patient codes.

Download (194KB)
6. Fig. 2. Experimental model of thromboinflammation: а, means the average neutrophil movement speed in the experiment; b, means the number of neutrophils adhering to the substrate during the experiment. For comparison purposes, the non-parametric Mann–Whitney test was used: *p < 0.05.

Download (132KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».