Characteristics of the functional state of peripheral blood neutrophils in patients with luminal breast cancer
- Authors: Korobkina J.D.1, Adamanskaya E.A.1,2, Polshina N.I.3, Galkina S.V.1,2, Kadyrov T.I.1, Gorbunov N.P.4, Sokolov A.V.4, Zhukova L.G.3, Sveshnikova A.N.1,2
-
Affiliations:
- Center for Theoretical Problems of Physico-Chemical Pharmacology RAS
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology
- Loginov Moscow Clinical Scientific Center
- Institute for Experimental Medicine
- Issue: Vol 25, No 2 (2025)
- Pages: 76-84
- Section: Original research
- URL: https://journal-vniispk.ru/MAJ/article/view/319497
- DOI: https://doi.org/10.17816/MAJ641688
- EDN: https://elibrary.ru/CFVRKH
- ID: 319497
Cite item
Abstract
BACKGROUND: Neutrophils are essential in tumor growth, and their functional state can serve as a prognostic biomarker. However, the functional characteristics of peripheral blood neutrophils, such as chemotaxis and predisposition to NETosis, in female patients with luminal breast cancer have not been sufficiently explored. Studying these parameters may provide new insights into the mechanisms of disease progression and response to therapy.
AIM: This work aimed to analyze the chemotactic activity of neutrophils and predisposition to NETosis in blood samples of female patients with locally advanced luminal breast cancer undergoing treatment (neoadjuvant chemotherapy) at the Loginov Moscow Clinical Scientific Center.
METHODS: The study was conducted on blood samples from six patients with stage 3 luminal B, HER2-negative breast cancer before and 2 months after the start of antitumor therapy. Blood samples from healthy adult volunteers were used as controls. The work was performed using fluorescence microscopy methods for neutrophil chemotaxis with the growth of blood clots and the number of extracellular DNA traps of neutrophils by reaction with Hoechst 33342 and antibodies against myeloperoxidase and neutrophil elastase in smears of blood plasma rich in leukocytes.
RESULTS: Before the start of neoadjuvant therapy, the level of NETosis is significantly increased (30% ± 14% versus 4.6% ± 3.4% in healthy donors), whereas most female patients undergoing therapy experience its reduction (17% ± 17%). The speed of neutrophil movement is increased in some female patients (0.17 ± 0.06 versus 0.113 ± 0.009 μm/s in healthy donors) and goes down during therapy (0.10 ± 0.03 μm/s). At the same time, the number of neutrophils associated with blood clots decreases during therapy (25 ± 18 versus 61 ± 23) even in patients with neutrophilia.
CONCLUSION: It has been demonstrated for the first time that in female patients with luminal B, HER2-negative breast cancer, the neutrophil chemotaxis speed deviates from the standard; at the same time, their adhesion is reduced, and peripheral blood neutrophils are significantly more predisposed to NETosis than in healthy donors.
Full Text
##article.viewOnOriginalSite##About the authors
Julia Jessica D. Korobkina
Center for Theoretical Problems of Physico-Chemical Pharmacology RAS
Email: juliajessika@gmail.com
ORCID iD: 0000-0002-2762-5460
SPIN-code: 6630-3657
Russian Federation, Moscow
Ekaterina-Iva A. Adamanskaya
Center for Theoretical Problems of Physico-Chemical Pharmacology RAS; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology
Email: ka.09@mail.ru
ORCID iD: 0009-0000-4828-4063
SPIN-code: 9633-1147
Russian Federation, Moscow; Moscow
Natalya I. Polshina
Loginov Moscow Clinical Scientific Center
Email: npolshina@yandex.ru
ORCID iD: 0000-0001-5417-0425
MD
Russian Federation, MoscowSofia V. Galkina
Center for Theoretical Problems of Physico-Chemical Pharmacology RAS; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology
Email: s_v_galkina@rambler.ru
ORCID iD: 0009-0006-6321-4489
Russian Federation, Moscow; Moscow
Timur I. Kadyrov
Center for Theoretical Problems of Physico-Chemical Pharmacology RAS
Email: kadyrov.ti17@physics.msu.ru
ORCID iD: 0009-0005-0130-1758
Russian Federation, Moscow
Nikolay P. Gorbunov
Institute for Experimental Medicine
Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281
Russian Federation, Saint Petersburg
Alexey V. Sokolov
Institute for Experimental Medicine
Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395
Dr. Sci. (Biology)
Russian Federation, Saint PetersburgLyudmila G. Zhukova
Loginov Moscow Clinical Scientific Center
Email: zhukova.lyudmila008@mail.ru
ORCID iD: 0000-0003-4848-6938
SPIN-code: 2177-6476
MD, Dr. Sci. (Medicine)
Russian Federation, MoscowAnastasia N. Sveshnikova
Center for Theoretical Problems of Physico-Chemical Pharmacology RAS; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology
Author for correspondence.
Email: ASve6nikova@yandex.ru
ORCID iD: 0000-0003-4720-7319
SPIN-code: 7893-4627
Dr. Sci. (Physics and Mathematics)
Russian Federation, Moscow; MoscowReferences
- Singh N, Baby D, Rajguru J, et al. Inflammation and cancer. Ann Afr Med. 2019;18(3):121–126. doi: 10.4103/aam.aam_56_18
- Doshi AS, Asrani KH. Innate and adaptive immunity in cancer. In: Cancer Immunology and Immunotherapy. Elsevier, 2022. P. 19–61.
- Wu M, Ma M, Tan Z, et al. Neutrophil: a new player in metastatic cancers. Front Immunol. 2020;11:565165. doi: 10.3389/fimmu.2020.565165
- Arpinati L, Shaul ME, Kaisar-Iluz N, et al. NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice. Cancer Immunol Immunother. 2020;69(2):199–213. doi: 10.1007/s00262-019-02474-x
- Galdiero MR, Bianchi P, Grizzi F, et al. Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Intl J Cancer. 2016;139(2):446–456. doi: 10.1002/ijc.30076
- Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–194. doi: 10.1016/j.ccr.2009.06.017
- Schaider H, Oka M, Bogenrieder T, et al. Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. Int J Cancer. 2003;103(3):335–343. doi: 10.1002/ijc.10775
- Musiani P, Allione A, Modica A, et al. Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Lab Invest. 1996;74(1):146–157.
- Cupp MA, Cariolou M, Tzoulaki I, et al. Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020;18(1):360. doi: 10.1186/s12916-020-01817-1
- Taucher E, Taucher V, Fink-Neuboeck N, et al. Role of tumor-associated neutrophils in the molecular carcinogenesis of the lung. Cancers. 2021;13:5972. doi: 10.3390/cancers13235972
- Jin L, Kim HS, Shi J. Neutrophil in the pancreatic tumor microenvironment. Biomolecules. 2021;11:1170. doi: 10.3390/biom11081170
- Margaroli C, Cardenas MA, Jansen CS, et al. The immunosuppressive phenotype of tumor-infiltrating neutrophils is associated with obesity in kidney cancer patients. OncoImmunology. 2020;9(1):1747731. doi: 10.1080/2162402X.2020.1747731
- Cerezo-Wallis D, Ballesteros I. Neutrophils in cancer, a love-hate affair. FEBS J. 2022;289(13):3692–3703. doi: 10.1111/febs.16022
- Shaul ME, Fridlender ZG. Cancer-related circulating and tumor-associated neutrophils – subtypes, sources and function. FEBS J. 2018;285(23):4316–4342. doi: 10.1111/febs.14524
- Gungabeesoon J, Gort-Freitas NA, Kiss M, et al. A neutrophil response linked to tumor control in immunotherapy. Cell. 2023;186(7):1448–1464.e20. doi: 10.1016/j.cell.2023.02.032
- Sveshnikova AN, Adamanskaya EA, Panteleev MA. Conditions for the implementation of the phenomenon of programmed death of neutrophils with the appearance of DNA extracellular traps during thrombus formation. Pediatric Hematology/Oncology and Immunopathology. 2024;23(1):211–218. EDN: UQHWLZ doi: 10.24287/1726-1708-2024-23-1-211-218
- Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147. doi: 10.1038/nri.2017.105
- Sveshnikova AN, Adamanskaya EA, Korobkina Yu-DD, Panteleev MA. Intracellular signaling involved in the programmed neutrophil cell death leading to the release of extracellular DNA traps in thrombus formation. Pediatric Hematology/Oncology and Immunopathology. 2024;23(2):222–230. doi: 10.24287/1726-1708-2024-23-2-222-230
- Shahzad MH, Feng L, Su X, et al. Neutrophil extracellular traps in cancer therapy resistance. Cancers (Basel). 2022;14(5):1359. doi: 10.3390/cancers14051359
- Martins-Cardoso K, Almeida VH, Bagri KM, et al. Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial-mesenchymal transition. Cancers (Basel). 2020;12(6):1542. doi: 10.3390/cancers12061542
- Poto R, Cristinziano L, Modestino L, et al. Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines. 2022;10:431. doi: 10.3390/biomedicines10020431
- Gao F, Feng Y, Hu X, et al. Neutrophils regulate tumor angiogenesis in oral squamous cell carcinoma and the role of Chemerin. Int Immunopharmacol. 2023;121:110540. doi: 10.1016/j.intimp.2023.110540
- Kaltenmeier C, Yazdani HO, Morder K, et al. Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 2021;12:785222. doi: 10.3389/fimmu.2021.785222
- Cives M, Pelle’ E, Quaresmini D, et al. The tumor microenvironment in neuroendocrine tumors: biology and therapeutic implications. Neuroendocrinology. 2019;109(2):83–99. doi: 10.1159/000497355
- Kou M, Lu W, Zhu M, et al. Massively recruited sTLR9+ neutrophils in rapidly formed nodules at the site of tumor cell inoculation and their contribution to a pro-tumor microenvironment. Cancer Immunol Immunother. 2023;72(8):2671–2686. doi: 10.1007/s00262-023-03451-1
- Mizuno R, Kawada K, Itatani Y, et al. The role of tumor-associated neutrophils in colorectal cancer. IJMS. 2019;20(3):529. doi: 10.3390/ijms20030529
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
- Howlader N, Altekruse SF, Li CI, et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 2014;106(5):dju055. doi: 10.1093/jnci/dju055
- Soto-Perez-de-Celis E, Chavarri-Guerra Y, Leon-Rodriguez E, Gamboa-Dominguez A. Tumor-associated neutrophils in breast cancer subtypes. Asian Pac J Cancer Prev. 2017;18(10):2689–2694. doi: 10.22034/APJCP.2017.18.10.2689
- Sheng Y, Peng W, Huang Y, et al. Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. J Leukoc Biol. 2023;113(4):383–399. doi: 10.1093/jleuko/qiad004
- Morozova DS, Martyanov AA, Obydennyi SI, et al. Ex vivo observation of granulocyte activity during thrombus formation. BMC Biol. 2022;20(1):32. doi: 10.1186/s12915-022-01238-x
- Korobkin JD, Deordieva EA, Tesakov IP, et al. Dissecting thrombus-directed chemotaxis and random movement in neutrophil near-thrombus motion in flow chambers. BMC Biol. 2024;22(1):115. doi: 10.1186/s12915-024-01912-2
- Adamanskaya EA, Yushkova EB, Fedorova DV, et al. Methodology for observing neutrophil DNA traps in blood samples of pediatric patients. In: Collection of abstracts of the XXIV congress of the I. P. Pavlov Physiological Society. Saint Petersburg; 2023. P. 127. EDN: WZIHSV (In Russ.)
- Sokolov AV, Ageeva KV, Kostevich VA, et al. Study of interaction of ceruloplasmin with serprocidins. Biochemistry (Moscow). 2010;75(11):1361–1367. EDN: OACVTD doi: 10.1134/S0006297910110076
- Sokolov AV, Acquasaliente L, Kostevich VA, et al. Thrombin inhibits the anti-myeloperoxidase and ferroxidase functions of ceruloplasmin: relevance in rheumatoid arthritis. Free Radic Biol Med. 2015;86:279–294. doi: 10.1016/j.freeradbiomed.2015.05.016
- Groblewska M, Mroczko B, Wereszczyńska-Siemiątkowska U, et al. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin Chem Lab Med. 2007;45(1):30–34. doi: 10.1515/CCLM.2007.025
- Schoergenhofer C, Schwameis M, Wohlfarth P, et al. Granulocyte colony-stimulating factor (G-CSF) increases histone-complexed DNA plasma levels in healthy volunteers. Clin Exp Med. 2017;17(2):243–249. doi: 10.1007/s10238-016-0413-6
- Xu Q, Zhao W, Yan M, Mei H. Neutrophil reverse migration. J Inflamm (Lond). 2022;19(1):22. doi: 10.1186/s12950-022-00320-z
- Patel S, Fu S, Mastio J, et al. Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol. 2018;19:1236–1247. doi: 10.1038/s41590-018-0229-5
- Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci. 2018;117(13):7326–7337. doi: 10.1073/pnas.1909546117
- Thålin C, Lundström S, Seignez C, et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One. 2018;13:e0191231. doi: 10.1371/journal.pone.0191231
- Krishnan J, Hennen EM, Ao M, et al. NETosis drives blood pressure elevation and vascular dysfunction in hypertension. Circ Res. 2024;134(11):1483–1494. doi: 10.1161/CIRCRESAHA.123.323897
- Li J-H, Tong D-X, Wang Y, et al. Neutrophil extracellular traps exacerbate coagulation and endothelial damage in patients with essential hypertension and hyperhomocysteinemia. Thromb Res. 2021;197:36–43. doi: 10.1016/j.thromres.2020.10.028
- Liu S, Wu W, Du Y, et al. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Mol Cancer. 2023;22:148. doi: 10.1186/s12943-023-01843-6
- Tamura M, Hattori K, Nomura H, et al. Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun. 1987;142(2):454–460. doi: 10.1016/0006-291X(87)90296-8
- Jun HS, Lee YM, Song KD, et al. G-CSF improves murine G6PC3-deficient neutrophil function by modulating apoptosis and energy homeostasis. Blood. 2011;117(14):3881–3892. doi: 10.1182/blood-2010-08-302059
- Yang Y, Yang J, Li L, et al. Neutrophil chemotaxis score and chemotaxis-related genes have the potential for clinical application to prognosticate the survival of patients with tumours. BMC Cancer. 2024;24:1244. doi: 10.1186/s12885-024-12993-1
- Sagiv JY, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–573. doi: 10.1016/j.celrep.2014.12.039
- Koyama S, Takamizawa A, Sato E, et al. Cyclophosphamide stimulates lung fibroblasts to release neutrophil and monocyte chemoattractants. Am J Physiol Lung Cell Mol Physiol. 2001;280(6):L1203–L1211. doi: 10.1152/ajplung.2001.280.6.L1203
- Palukuri NR, Yedla RP, Bala SC, et al. Incidence of febrile neutropenia with commonly used chemotherapy regimen in localized breast cancer. South Asian J Cancer. 2020;9(1):4–6. doi: 10.4103/sajc.sajc_439_18
- Katsifis GE, Tzioufas AG, Vlachoyiannopoulos PG, et al. Risk of myelotoxicity with intravenous cyclophosphamide in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2002;41(7):780–786. doi: 10.1093/rheumatology/41.7.780
Supplementary files
