The impact of nebivolol, carvedilol and propranolol on pulmonary microhemodynamics in case of experimental pulmonary thromboembolism in rabbits
- Authors: Evlakhov V.I.1,2, Poyassov I.Z.1,3, Berezina T.P.1
-
Affiliations:
- Institute of Experimental Medicine
- Pavlov First Saint Petersburg State Medical University
- Saint-Petersburg State University of Aerospace Instrumentation
- Issue: Vol 22, No 1 (2022)
- Pages: 17-27
- Section: Original research
- URL: https://journal-vniispk.ru/MAJ/article/view/96368
- DOI: https://doi.org/10.17816/MAJ96368
- ID: 96368
Cite item
Abstract
BACKGROUND: Beta-adrenoblockers nebivolol, carvedilol and propranolol are used in clinical cardiology for the treatment of patients with ischemic heart disease. Pulmonary thromboembolism can develop in such patients. However, its unknown, what will be the pulmonary microcirculatory changes in case of pulmonary thromboembolism after pretreatment with beta-blockers.
AIM: The comparative analysis of the pulmonary microhemodynamics changes following experimental pulmonary thromboembolism in rabbits after pretreatment with nebovolol, carvedilol and propranolol.
MATERIAL AND METHODS: In 35 isolated perfused rabbit lungs we investigated the changes of pulmonary microcirculation in case of experimental pulmonary thromboembolism after pretreatment with β1-blocker — nebivolol, combined blocker of α1- and β1, 2-adrenoceptors — carvedilol, and blocker of β1, 2-adrenoceptors propranolol.
RESULTS: After administration of β1, 2-adrenoceptors blocker — propranolol and β1-blocker — nebivolol the most of the pulmonary microcirculatory parameters increased. Combined α1-, β1, 2-blocker carvedilol caused mainly vasodilatory effects of the pulmonary arterial vessels, however, the pulmonary venous resistance increased. Pulmonary thromboembolism after pretreatment with beta-blockers caused pronounced increase of pulmonary artery pressure, precapillary and pulmonary vascular resistance. In that case after pretreatment with carvedilol capillary filtration coefficient was increased two times more than after propranolol administration; after pretreatment with nebivolol capillary filtration coefficient increased less, than after propranolol administration.
CONCLUSIONS: Acute pulmonary embolism caused less pronounced increasing of capillary filtration coefficient in case of nebivolol administration, than after pretreatment with carvedilol and propranolol.
Full Text
##article.viewOnOriginalSite##About the authors
Vadim I. Evlakhov
Institute of Experimental Medicine; Pavlov First Saint Petersburg State Medical University
Author for correspondence.
Email: viespbru@mail.ru
ORCID iD: 0000-0002-2521-8140
SPIN-code: 9072-4077
Scopus Author ID: 6603378175
MD, Dr. Sci. (Med.), Head of the Laboratory of the Physiology of Visceral Systems named after acad. K.M. Bykov
Russian Federation, Saint Petersburg; Saint PetersburgIlya Z. Poyassov
Institute of Experimental Medicine; Saint-Petersburg State University of Aerospace Instrumentation
Email: ilpoar@yandex.ru
ORCID iD: 0000-0002-1700-7837
SPIN-code: 7285-0493
Doctor of Biological Sciences, Senior Research Fellow of the Laboratory of the Physiology of Visceral Systems named acad. K.M. Bykov; Professor of the Department of the Medical Electronics
Russian Federation, Saint Petersburg; Saint PetersburgTatiana P. Berezina
Institute of Experimental Medicine
Email: retaber@mail.ru
ORCID iD: 0000-0003-0647-2458
SPIN-code: 6086-1663
Cand. Sci. (Biol.), Research Fellow of the Laboratory of the Physiology of Visceral Systems named after acad. K.M. Bykov
Russian Federation, Saint PetersburgReferences
- Dézsi CA, Szentes V. The Real Role of β-Blockers in daily cardiovascular therapy. Am J Cardiovasc Drugs. 2017;17(5):361–373. doi: 10.1007/s40256-017-0221-8
- DiNicolantonio JJ, Lavie CJ, Fares H, et al. Meta-analysis of carvedilol versus beta 1 selective beta-blockers (Atenolol, Bisoprolol, Metoprolol, and Nebivolol). Am J Cardiol. 2013;111(5):765–769. DOI: 10.1016/ j.amjcard.2012.11.031
- Kamp O, Metra M, Bugatti S, et al. Nebivolol: haemodynamic effects and clinical significance of combined beta-blockade and nitric oxide release. Drugs. 2010;70(1):41–56. doi: 10.2165/11530710-000000000-00000
- Fujio H, Nakamura K, Matsubara H, et al. Carvedilol inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension. J Cardiovasc Pharmacol. 2006;47(2):250–255. doi: 10.1097/01.fjc.0000201359.58174.c8
- Pankey EA, Edward JA, Swan KW, et al. Nebivolol has a beneficial effect in monocrotaline-induced pulmonary hypertension. Can J Physiol Pharmacol. 2016;94(7):758–768. doi: 10.1139/cjpp-2015-0431
- Al-Ogaili A, Ayoub A, Quintero LD, et al. Rate and impact of venous thromboembolism in patients with ST-segment elevation myocardial infarction: analysis of the nationwide inpatient sample database 2003–2013. Vasc Med. 2019;24(4):341–348. doi: 10.1177/1358863X19833451
- Chen HM, Duan YY, Li J, et al. A rabbit model with acute thrombo-embolic pulmonary hypertension created with echocardiography guidance. Ultrasound Med Biol. 2008;34(2):221–227. doi: 10.1016/j.ultrasmedbio.2007.06.011
- Dull RO, Cluff M, Kingston J, et al. Lung heparan sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):L816–L828. doi: 10.1152/ajplung.00080.2011
- Ketabchi F, Ghofrani HA, Schermuly RT, et al. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction. Respir Res. 2012;13(1):7. doi: 10.1186/1465-9921-13-7
- Bravo-Reyna CC, Torres-Villalobos G, Aguilar-Blas N, et al. Comparative study of capillary filtration coefficient (Kfc) determination by a manual and automatic perfusion system. Step by step technique review. Physiol Res. 2019;68(6):901–908. doi: 10.33549/physiolres.933971
- Dvoretsky DP. A combined method for measuring transcapillary fluid exchange and regional hemodynamic parameters during constant pressure-flow conditions. Acta Physiol Hung. 1984;63(1):29–33.
- Evlakhov VI, Berezina TP, Poyassov IZ, Ovsyannikov VI. Pulmonary microcirculation during experimental pulmonary thromboembolism under conditions of activation and blockade of muscarinic acetylcholine receptors. Bull Exp Biol Med. 2021;171(2):198–201. doi: 10.1007/s10517-021-05194-4
- Chen LY, Cheng CW, Liang JY. Effect of esterification condensation on the Folin-Ciocalteu method for the quantitative measurement of total phenols. Food Chem. 2015;170:10–15. doi: 10.1016/j.foodchem.2014.08.038
- Wacker MJ, Best SR, Kosloski LM, et al. Thromboxane A2-induced arrhythmias in the anesthetized rabbit. Am J Physiol Heart Circ Physiol. 2006;290(4):H1353–H1361. doi: 10.1152/ajpheart.00930.2005
- Dal Negro R. Pulmonary effects of nebivolol. Ther Adv Cardiovasc Dis. 2009;3(4):329–334. doi: 10.1177/1753944709339968
- Katsuda SI, Fujikura Y, Horikoshi Y, et al. Different responses of arterial stiffness between the aorta and the iliofemoral artery during the administration of phentolamine and atenolol in rabbits. J Atheroscler Thromb. 2021;28(6):611–621. doi: 10.5551/jat.57364
- Rezania S, Puskarich MA, Petrusca DN, et al. Platelet hyperactivation, apoptosis and hypercoagulability in patients with acute pulmonary embolism. Thromb Res. 2017;155:106–115. doi: 10.1016/j.thromres.2017.05.009
- Wang Y, Yu D, Yu Y, et al. Potential role of sympathetic activity on the pathogenesis of massive pulmonary embolism with circulatory shock in rabbits. Respir Res. 2019;20(1):97. doi: 10.1186/s12931-019-1069-z
- Görnemann T, Villalón CM, Centurión D, Pertz HH. Phenylephrine contracts porcine pulmonary veins via alpha(1B)-, alpha(1D)-, and alpha(2)-adrenoceptors. Eur J Pharmacol. 2009;613(1–3):86–92. doi: 10.1016/j.ejphar.2009.04.011
- Leblais V, Delannoy E, Fresquet F, et al. Beta-adrenergic relaxation in pulmonary arteries: preservation of the endothelial nitric oxide-dependent beta2 component in pulmonary hypertension. Cardiovasc Res. 2008;77(1):202–210. DOI: 0.1093/cvr/cvm008
- Parker JC, Townsley MI. Physiological determinants of the pulmonary filtration coefficient. Am J Physiol Lung Cell Mol Physiol. 2008;295(2):L235–L237. doi: 10.1152/ajplung.00064.2008
- McGrath JC. Localization of alpha-adrenoceptors: JR Vane Medal Lecture. Br J Pharmacol. 2015;172(5):1179–1194. doi: 10.1111/bph.13008
- Pimentel AM, Costa CA, Carvalho LC, et al. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Vascul Pharmacol. 2007;46(5):353–359. doi: 10.1016/j.vph.2006.12.003
- Jantschak F, Pertz HH. Alpha2C-adrenoceptors play a prominent role in sympathetic constriction of porcine pulmonary arteries. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(6):595–603. doi: 10.1007/s00210-012-0741-3
- Chen Q, Yi B, Ma J, et al. α2-adrenoreceptor modulated FAK pathway induced by dexmedetomidine attenuates pulmonary microvascular hyper-permeability following kidney injury. Oncotarget. 2016;7(35):55990–56001. doi: 10.18632/oncotarget.10809
- Ladage D, Brixius K, Hoyer H, et al. Mechanisms underlying nebivolol-induced endothelial nitric oxide synthase activation in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol. 2006;33(8):720–724. doi: 10.1111/j.1440-1681.2006.04424.x
- Bäck M, Walch L, Norel X, et al. Modulation of vascular tone and reactivity by nitric oxide in porcine pulmonary arteries and veins. Acta Physiol Scand. 2002;174(1):9–15. doi: 10.1046/j.1365-201x.2002.00928.x
- Durán WN, Beuve AV, Sánchez FA. Nitric oxide, S-nitrosation, and endothelial permeability. IUBMB Life. 2013;65(10):819–826. doi: 10.1002/iub.1204
- Spindler V, Waschke J. Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions. Microcirculation. 2011;18(2):118–127. doi: 10.1111/j.1549-8719.2010.00072.x
- Yang J, Sun H, Zhang J, et al. Regulation of β-adrenergic receptor trafficking and lung microvascular endothelial cell permeability by Rab5 GTPase. Int J Biol Sci. 2015;11(8):868–878. doi: 10.7150/ijbs.12045
Supplementary files
