Hyperoxia and hypoxia influence to adaptive processes at muscular work

Cover Page

Cite item

Full Text

Abstract

In this brief review we will state the use of hyperoxia (HO) in sports training. HO training has been recommended by some authors for athletes to increase their performance. Herewith, there is no reliable knowledge about physiology mechanisms that provides the athlete level of growth during long-term training under HO conditions. Concurrently in the last half century, the athletes’ performance in endurance sports has grown remarkably due to natural and artificial hypoxia application in training process of many kinds of sports. Long-term adaptation mechanisms to muscular work under hypoxia conditions are shortly summarized for comparison with HO effects and we emphasized that the prospectivity of searching the ways for regular usage HO to increase athletic performance is too questionable.

About the authors

Aleksander S. Radchenko

St. Petersburg Humanitarian University of Trade Unions

Author for correspondence.
Email: radtcha@mail.ru

Dr. Biol. Sci., Professor, Department of Physical Culture

Russian Federation, Saint Petersburg

Petr D. Shabanov

S.M. Kirov Military Medical Academy

Email: pdshabanov@mail.ru

Dr. Med. Sci., Professor and Head, Department of Pharmacology

Russian Federation, Saint Petersburg

References

  1. Колчинская А.З., Цыганова Т.Н., Остапенко Л.А. Нормобарическая интервальная гипоксическая тренировка в медицине и спорте. - М.: Медицина, 2003. - 408 c. [Kolchinskaya AZ, Tsiganova TN, Ostapenko LA. Normobaricheskaya interval’naya trenirovka v meditsine I sporte. Moscow: Meditsina; 2003. 408 p. (In Russ.)]
  2. Корягина Ю.В. Общие аспекты применения эргогенных средств в спорте высших достижений // Вопросы функциональной подготовки в спорте высших достижений. - 2013. - Т. 1. - № 1. - С. 169-178. [Koryagina YuV. Obshchie aspekty primeneniya ergogennykh sredstv v sporte vysokikh dostizhenii. Voprosy funktsional’noi podgotovki v sporte vysshykh dostizhenii. 2013;1(1):169-178. (In Russ.)]
  3. Михалев В.И., Реуцкая Е.А., Корягина Ю.В. Использование кислородной поддержки для повышения предельных возможностей и экономичности функционирования организма спортсменов // Лечебная физическая культура и спортивная медицина. - 2012. - Т. 10. - № 106. - С. 16-23. [Mikhalyev VI, Reutskaya EA, Koryagina YuV. Ispol’zovanie kislorodnoi podderzhki dlya povysheniya predel’nykh vozmozhnostei I ekonomichnosti funktsionirovaniya organizma sportsmenov. Lechebnaya fizkul’tura I sportivnaya meditsina. 2012;10(106):16-23. (In Russ.)]
  4. Поликарпочкин А.Н. Гипербарическая оксигенация как способ улучшения адаптации спортсменов к физическим нагрузкам // Вестник Российской военно-медицинской академии. - 2010. - T. 29. - № 1. - С. 151-155. [Polikarpochkin AN. Giperbaricheskaya oksigenatsiya kak sposob uluchsheniya adaptatsii sportsmenov k fizicheskim nagruzkam. Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2010;1(29):151-155. (In Russ.)]
  5. Радченко А.С. Применение естественной и искусственной гипоксии в спортивной тренировке // Обзоры по клинической фармакологии и лекарственной терапии. - 2013. - Т. 11. - № 1. - С. 26-32. [Radchenko AS. Primenenie estestvennoi I iskusstvennoi gipoksii v sportivnoi trenirovke. Reviews on Clinical Pharmacology and Drug Therapy. 2013;11(1):26-32. (In Russ.)]
  6. Радченко А.С., Борисенко Н.С., Калиниченко А.Н., и др. Взаимодействие пред- и постнагрузки сердца и RR-интервалов при нормобарическом жестком гипоксическом воздействии у молодых здоровых лиц // Обзоры по клинической фармакологии и лекарственной терапии. - 2013. - Т. 11. - № 3. - С. 40-49. [Radchenko AS, Borisenko NS, Kalinichenko AN, et al. Vzaimodeistviye pred- I postnagruzki serdtsa I RR intervalov pri normobaricheskom zhyostkom vozdeistvii u mologykh zdorovykh lits. Reviews on Clinical Pharmacology and Drug Therapy. 2013;11(3):40-49. (In Russ.)]
  7. Радченко А.С. Окись азота и гипоксия при адаптации к мышечной работе (краткий обзор) // Обзоры по клинической фармакологии и лекарственной терапии. - 2016. - Т. 14. - № 1. - С. 78-88. [Radchenko AS. Okis’ azota I gipoksiya pri adaptatsii k myshechnoi rabote (kratkii obzor). Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):78-88. (In Russ.)]
  8. Радченко А.С., Борисенко Н.С., Калиниченко А.Н., и др. Изменения активности правого сердца в результате нормобарического гипоксического прекондиционирования // Материалы XXIII съезда Физиологического общества им. И.П. Павлова. - Воронеж: ИСТОКИ, 2017. - С. 1508-1510. [Radchenko AS, Borisenko NS, Kalinichenko AN, et al. Izmeneniya aktivnosti pravogo serdtsa v rezul’tate normobaricheskogo gipoksicheskogo prekonditsionorovaniya. In: Materialy XXIII s’ezda Fiziologicheskogo obshchestva im. I.P. Pavlova. (conference proceedings) Voronezh: Istoki; 2017. P. 1508-1510. (In Russ.)]
  9. Amann M, Calbet JA. Convective oxygen transport and fatigue. J Appl Physiol. 2008;104(3):861-870. doi: 10.1152/japplphysiol.01008.2007.
  10. Amann M, Eldridge MW, Lovering AT, et al. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle. J Physiol. 2006;575(3):937-952. doi: 10.1113/jphysiol.2006.113936.
  11. Bernheim AM, Attenhofer J, Zuber M, et al. Right ventricle best predicts the race performance in amateur ironman athletes. Med Sci Sports Exerc. 2013;45(8):1593-1599. doi: 10.1249/MSS.0b013e31828ba558.
  12. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107-127. doi: 10.2165/00007256-200939020-00002.
  13. Boushel R, Gnaiger E, Calbet JAL, et al. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans. Mitochondrion. 2011;11(2):303-307. doi: 10.1016/j.mito.2010.12.006.
  14. Brocherie F, Millet GP, Hauser A, et al. “Live High-Train Low and Highˮ Hypoxic Training Improves Team Sport Performance. Med Sci Sports Exerc. 2015;47(10):2140-2149. doi: 10.1249/MSS.0000000000000630.
  15. Burgos C, Henriques-Olguin C, Andrade DC, et al. Effects of Exercise Training under Hyperbaric Oxygen on Oxidative Stress Markers and Endurance Performance in Young Soccer Players: A Pilot Study. Journal of Nutrition and Metabolism. 2016;2016:5647407. doi: 10.1155/2016/5647407.
  16. Carr AJ, Saunders PU, Vallance BS, et al. Increased Hypoxic Dose after Training at Low Altitude with 9h per Night at 3000 m Normobaric Hypoxia. J Sports Sci Med. 2015;14(4):776-782. PMCID: PMC4657420.
  17. D’Alessandro A, Nemkov T, Sun K, et al. AltitudeOmics: Red Blood Cell Metabolic Adaptation to High Altitude Hypoxia. J Proteome Res. 2016;15(10):3883-3895. doi: 10.1021/acs.jproteome.6b00733.
  18. Dasika SK, Kinsey ST, Locke BR. Reaction-diffusion constraints in living tissue: Effectiveness factors in skeletal muscle design. Biotechnol Bioeng. 2011;108:104-115. doi: 10.1002/bit.22926.
  19. Dasika SK, Kinsey ST, Locke BR. Facilitated Diffusion of Myoglobin and Creatine Kinase and Reaction-Diffusion Constraints of Aerobic Metabolism Under Steady State Conditions in Skeletal Muscle. Biotechnol Bioeng. 2012;109(2):545-558. doi: 10.1002/bit.23329.
  20. Debevec T, Pialoux V, Saugy J, et al. Prooxidant/Antioxidant Balance in Hypoxia: A Cross-over Study on Normobaric vs. Hypobaric “Live High-Train Low”. PloS One. 2015;10(9): e0137957. doi: 101371/journal.pone.0137957.
  21. Deussen A, Brand M, Pexa A, Weichel J. Metabolic coronary flow regulation - Current concepts. Bas Res Cardiol. 2006;101(6):453-464. doi: 10.1007/s00395-0060621-4.
  22. Dufour SP, Ponsot E, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J Appl Physiol. 2006;100: 1238-1248. doi: 10.1152/japplphysiol.00742.2005.
  23. Ellsworth ML, Ellis CG, Goldman D, et al. Erythrocytes: Oxygen Sensors and Modulators of Vascular Tone. Physiology. 2009;24(2):107-116. doi: 10.1152/Physiol. 00038.2008.
  24. Faiss R, Girard O, Millet G. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47: i45-i50. doi: 10.1136/bjsports-2013-092741.
  25. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dynamic Medicine 2009;8(1):1-15. (Published online). doi: 10.1186/1476-5918-8-1.
  26. Girard O, Pluim BM. Improving team-sport player’s physical performance with altitude training: from beliefs to scientific evidence. Br J Sports Med. 2013;47:i2-i3. doi: 10.1136/bjsports-2013-093119.
  27. Girard O, Amann M, Aughey R, et al. Position statement-altitude training for improving team-sport players’ performance: current knowledge and unresolved issues. Br J Sports Med. 2013;47(Suppl 1): i8-i16. doi: 10.1136/bjsports-2013-093109.
  28. Gladwin MT. Evidence mounts that nitrite contributes to hypoxic vasodilation in the human circulation. Circulation. 2008;117:594-597. doi: 10.1161/ CIRCULATIONAHA.107.753897.
  29. González-Alonso J. ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans. J Physiol. 2012;590:5001-5013. doi: 10.1113/jphysiol.2012.235002.
  30. González-Alonso J, Olsen DB, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res. 2002;91:10461055. doi: 10.1161/01.RES.0000044939.73286.E2.
  31. González-Alonso J, Mortensen SP, Dawson EA, et al. Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol. 2006;572:295-305. doi: 10.1113/jphysiol.2005.101121.
  32. Gore CJ, Hopkins WG. Counterpoint: positive effects of intermittent hypoxia (live high: train low) on exercise performance are not mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99(5):2055-2057; discussion 7-8.
  33. Gros G, Wittenberg BA, Jue T. Myoglobin’s old and new clothes: from molecular structure to function in living cells. J Exp Biol. 2010;213:2713-2725. doi: 10.1242/jeb.043075.
  34. Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med. 2001;31(7):533-557. doi: 10.2165/00007256-200131070-00008.
  35. Hauser A, Zinner C, Born DP, et al. Does hyperoxic recovery during cross-country skiing team sprints enhance performance? Med Sci Sports Exerc. 2014;46(4):787-794. doi: 10.1249/MSS.0000000000000157.
  36. Hellsten Y, Nyberg M, Mortensen SP. Contribution of intravascular versus interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans. J Physiol. 2012;590:5015-5023. doi: 10.1113/ jphysiol.2012.234963.
  37. Hodges A, Delaney J, Lecomte J, et al. Effect of hyperbaric oxygen on oxygen uptake and measurements in the blood and tissues in a normobaric environment. Br J Sports Med. 2003;37(6):516-520. doi: 10.1136/bjsm.37.6.516.
  38. Hood DA. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001;90(3):1137-1157. doi: 10.1152/jappl.2001.90.3.1137.
  39. Jensen FB. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J Exp Biol. 2009;212:3387-3393. doi: 10.1242/ jeb.023697.
  40. Kanatous SB, Mammen PPA, Rosenberg P, et al. Hypoxia reprograms calcium signaling and regulates myoglobin expression. Am J Physiol Cell Physiol. 2009;296: C393-C402.
  41. Kanatous SB, Mammen PPA. Regulation of myoglobin expression. J Exper Biol. 2010;213:2741-2747. doi: 10.1242/jeb.041442.
  42. Kayser B, Marco M, Binzoni T, et al. Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. J Appl PhysioI. 1994;76(2):634-640. doi: 10.1152/jappl.1994.76.2.634.
  43. Kilding AE, Wood M, Sequira G, Bonetti DL. Effect of hyperoxic supplemented interval training on endurance performance in trained cyclists. Int J Sports Med. 2012;33(5):359-363. doi: 10.1055/s-0031-1297999.
  44. Knight DR, Schaffartzik W, Poole DC, et al. Hyperoxia increases leg maximal oxygen uptake. J Appl Physiol. 1993;75:2586-2594.
  45. Levine BD, Stray-Gundersen J. Point: Positive effects of intermittent hypoxia (live high: train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99:2053-2055. doi: 10.1152/japplphysiol.00877.2005.
  46. Lin PC, Kreutzer U, Thomas J. Myoglobin translational diffusion in rat myocardium and its Implication on intracellular oxygen transport. J Physiol. 2007;578:595-603. doi: 10.1113/jphysiol.2006.116061.
  47. Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol. 2016;101(1):17-22. doi: 10.1113/EP085319.
  48. Magder S. The left heart can only be as good as the right heart: determinants of function and dysfunction of the right ventricle. Critical Care & Resuscitation. 2007;9(4):344-351.
  49. Med Sci Sports Exerc. 2007;39(9):1587-1631. http://journals.lww.com/acsm-msse/toc/2007/09000#-845631243 (table contents outline - BASIC SCIENCES: Symposium: Altitude/Hypoxic Training: Research-Based Evidence and Practical Application).
  50. Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med. 2010;40:1-25. doi: 10.2165/11317920-000000000-00000.
  51. Mrakic-Sposta S, Gussoni M, Moretti S, et al. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques. PLoS ONE. 2015;10(11): e0141780. doi: 10.1371/journal.pone.0141780.
  52. Nummela A, Hamalainen I, Rusko H. Effect of hyperoxia on metabolic responses and recovery in intermittent exercise. Scand J Med Sci Sports. 2002;12:309-315. doi: 10.1034/j.1600-0838.2002.10157.
  53. Oussaidene K, Prieur F, Bougault V, et al. Cerebral oxygenation during hyperoxia-induced increase in exercise tolerance for untrained men. Eur J Appl Physiol. 2013;113:2047-2056. doi: 10.1007/s00421-013-2637-4.
  54. Pathi B, Kinsey ST, Locke BR. Influence of reaction and diffusion on spatial organization of mitochondria and effectiveness factors in skeletal muscle cell design. Biotechnol Bioeng. 2011;108(8):1912-1924. doi: 10.1002/bit.23112.
  55. Pathi B, Kinsey ST, Howdeshell ME, et al. The formation and functional consequences of heterogeneous mitochondrial distributions in skeletal muscle. J Exper Biol. 2012;215:1871-1883. doi: 10.1242/jeb.067207.
  56. Pathi B, Kinsey ST, Locke BR. Oxygen Control of Intracellular Distribution of Mitochondria in Muscle Fibers. Biotechnol Bioeng. 2013;110(9):2513-2524. doi: 10.1002/bit.24918.
  57. Peeling P, Andersson R. Effect of hyperoxia during the rest periods of interval training on perceptual recovery and oxygen re-saturation time. J Sport Sci. 2011;29(2):147-150. doi: 10.1080/02640414.2010.526133.
  58. Peltonen JE, Tikkanen HO, Rusko HK. Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia and normoxia. Eur J Appl Physiol. 2001;85:82-88. doi: 10.1007/s004210100411.
  59. Perry CG, Talanian JL, Heigenhauser GJ, Spriet LL. The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance. J Appl Physiol. 2007;102:1022-1027. doi: 10.1152/japplphysiol.01215.2006.
  60. Ponsot E, Dufour SP, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol. 2006;100:1249-1257. doi: 10.1152/japplphysiol.00361.2005.
  61. Ponsot E, Dufour SP, Doutreleau S, et al. Impairment of maximal aerobic power with moderate hypoxia in endurance athletes: do skeletal muscle mitochondria play a role? Am J Physiol Regul Integr Comp Physiol. 2010;298(3): R558-R566. doi: 10.1152/ajpregu.00216.2009.
  62. Powell FL, Garcia N. Physiological effects of intermittent hypoxia. High Alt Med Biol. 2000;1:125-136. doi: 10.1089/15270290050074279.
  63. Richardson RS, Tagore K, Haseler L, et al. Increased VO2max with a right shifted Hb-O2 dissociation curve at a constant O2 delivery in dog muscle in situ. J Appl Physiol. 1998;84:995-1002. doi: 10.1152/jappl.1998.84.3.995.
  64. Radchenko AS, Borisenko NS, Kalinichenko AN, et al. Heard Normobaric Hypoxia Increases Minute Blood Flow, Changes Rhythmic Interactions of Pre- and Afterload Indices of the Heart, and R-R Intervals of ECG. In the World of the Scientific Discoveries. Series B. 2015;3(1):81-88.
  65. Roca J, Hogan MC, Story D, et al. Wagner PD. Evidence for tissue diffusion limitation of VO2max in normal humans. J Appl Physiol. 1989;67:291-299. doi: 10.1152/jappl.1989.67.1.291.
  66. Rusko HK, Leppavuori A, Makela P. Living high-training low: a new approach to altitude training at sea level in athletes [abstract]. Med Sci Sports Exerc. 1995;27(Suppl. 5):6.
  67. Rusko HK, Tikkanen H, Paavolainen L, et al. Effect of living in hypoxia and training in normoxia on sea level VO2max and red cell mass. Med Sci Sports Exerc. 1999;31:86. doi: 10.1097/00005768-199905001-00277.
  68. Saugy JJ, Schmitt L, Hauser A, et al. Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia. Front Physiol. 2016;19(7):138. doi: 10.3389/fphys.2016.00138. eCollection 2016.
  69. Serebrovskaya TV, Xi L. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: Practical analysis on methods and equipment. Exp Biol Med. (Maywood). 2016;241(15):1708-1723. doi: 10.1177/1535370216657614.
  70. Serebrovskaya TV, Manyukhina EB, Smith ML, et al. Intermittent Hypoxia: Cause of or Therapy for Systemic Hypertension? Exp Biol Med. 2008;233(6):627-650. doi: 10.3181/0710-MR-262.
  71. Shimoda LA, Polak J. Hypoxia 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol. 2011;300(5): C951-C967. doi: 10.1152/ajpcell.00512.2010.
  72. Sperlich B, Zinner C, Krueger M, et al. Effects of hyperoxia during recovery from 5x30-s bouts of maximal-intensity exercise. J Sports Sci. 2012;30(9):851-858. doi: 10.1080/02640414.2012.671531.
  73. Sperlich B, Calbet JAL, Boushel R, Holmberg H-C. Is the use of hyperoxia in sports effective, safe and ethical? Scand J Med Sci Sports. 2016;26(11):1268-1272. doi: 10.1111/sms.12746.
  74. Stellingwerff T, Leblanc PJ, Hollidge MG, et al. Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise. Am J Physiol End Metabol. 2006;290: E1180-E1190. doi: 10.1152/ajpendo.00499.2005.
  75. Stray-Gundersen J, Chapman RF, Levine BD. “Living high - training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol. 2001;91:1113-1120. doi: 10.1152/jappl.2001.91.3.1113.
  76. Subudhi AW, Bourdillon N, Bucher J, et al. AltitudeOmics: the integrative physiology of human acclimatization to hypobaric hypoxia and its retention upon reascent. PLoS One (Public Library of Science). 2014;9(3): e92191. doi: 10.1371/journal.pone.0092191.
  77. Totzeck M, Hendgen-Cotta UB, Kelm M, Rassaf T. Crosstalk between Nitrite, Myoglobin and Reactive Oxygen Species to Regulate Vasodilation under Hypoxia. PLoS One. 2014;9(8): e105951. doi: 10.1371/journal.pone.0105951.
  78. Truijens MJ, Rodríguez FA, Townsend NE, et al. The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. J Appl Physiol. 2008;104:328-337. doi: 10.1152/japplphysiol.01324.2006.
  79. Verges S, Rupp T, Jubeau M, et al. Cerebral perturbations during exercise in hypoxia. Am J Physiol. 2012;32(8): R903-R916. doi: 10.1152/ajpregu.00555.2011.
  80. Wagner PD. Cross Talk proposal: Diffusion limitation of O2 from microvessels into muscle does contribute to the limitation of VO2max. J Physiol 2015;593(Pt. 17):3757-3758. doi: 101113/JP270551.
  81. Webster AL, Syrotuik DG, Bell GJ, et al. Exercise after acute hyperbaric oxygenation: is there an ergogenic effect? Undersea and Hyperbaric Medicine. 1998;25(3):153-159.
  82. White J, Dawson B, Landers G, et al. Effect of supplemental oxygen on post-exercise inflammatory response and oxidative stress. Eur J Appl Physiol. 2013;113:1059-1067. doi: 10.1007/s00421-012-2521-7
  83. Wilber RL. Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc. 2007;39(9):1610-1624. doi: 10.1249/mss.0b013e3180de49e6.
  84. Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on Physiological response and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590-1599. doi: 10.1249/mss.0b013e3180de49bd.
  85. Xu F, Liu P, Pascual JM, et al. Effect of Hypoxia and Hyperoxia on Cerebral Blood Flow, Blood Oxygenation, and Oxidative Metabolism. J Cereb Blood Flow Metab. 2012;32(10):1909-1918. doi: 10.1038/jcbfm.2012.93.
  86. Zinner C, Hauser A, Born DP, et al. Influence of hypoxic interval training and hyperoxic recovery on muscle activation and oxygenation in connection with double-poling exercise. PLoS ONE. 2015;10: e0140616. doi: 10.1371/journal.pone.0140616.
  87. Zoll J, Ponsot E, Dufour S, et al. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol. 2006;100:1258-1266. doi: 10.1152/japplphysiol.00359.2005.

Copyright (c) 2018 Radchenko A.S., Shabanov P.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».