Моделирование депрессии на зебраданио
- Авторы: Галстян Д.С.1,2,3, Колесникова Т.О.4, Косицын Ю.М.1, Забегалов К.Н.4, Губайдуллина М.А.4, Маслов Г.О.4,5, Демин К.А.1,4,3, Хацко С.Л.5, Калуев А.В.1,2,4,3,5,6,7,8
-
Учреждения:
- Санкт-Петербургский государственный университет
- Российский научный центр радиологии и хирургических технологий им. акад. А.М. Гранова
- Национальный медицинский исследовательский центр им. В.А. Алмазова
- Научно-технологический университет «Сириус»
- Уральский федеральный университет
- Новосибирский государственный университет
- Научно-исследовательский институт нейронаук и медицины
- Московский физико-технический институт
- Выпуск: Том 20, № 2 (2022)
- Страницы: 149-156
- Раздел: Оригинальные исследования
- URL: https://journal-vniispk.ru/RCF/article/view/109702
- DOI: https://doi.org/10.17816/RCF202149-156
- ID: 109702
Цитировать
Аннотация
Депрессия — широко распространенное серьезное психическое расстройство, для которого характерны плохое настроение, ангедония, утомляемость, снижение внимания, суицидальность и психомоторная заторможенность, сопровождающиеся нейроэндокринными и молекулярными нарушениями. Рыбы зебраданио, имея схожие с человеком нейроэндокринные и нейротрансмитерные системы, а также высокую генетическую гомологию, становятся популярным образцом для моделирования депрессивно-подобных состояний. На сегодняшний день разработаны и активно применяются различные поведенческие, фармакологические и генетические модели депрессии на зебраданио, рассмотренные в настоящей статье.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Давид Самвелович Галстян
Санкт-Петербургский государственный университет; Российский научный центр радиологии и хирургических технологий им. акад. А.М. Гранова; Национальный медицинский исследовательский центр им. В.А. Алмазова
Email: david_sam@mail.ru
ORCID iD: 0000-0002-6213-5117
научн. сотр.
Россия, Санкт-Петербург; Санкт-Петербург; Санкт-ПетербургТатьяна Олеговна Колесникова
Научно-технологический университет «Сириус»
Email: philimontani@yandex.ru
ORCID iD: 0000-0002-5561-8583
SPIN-код: 8558-7887
научн. сотр.
Россия, СочиЮрий Михайлович Косицын
Санкт-Петербургский государственный университет
Email: ikosicin53@gmail.com
ORCID iD: 0000-0002-4266-808X
научн. сотр.
Россия, Санкт-ПетербургКонстантин Николаевич Забегалов
Научно-технологический университет «Сириус»
Email: hatokiri@mail.ru
ORCID iD: 0000-0002-9748-0324
SPIN-код: 5993-6315
научн. сотр.
Россия, СочиМария Андреевна Губайдуллина
Научно-технологический университет «Сириус»
Email: mariangub@gmail.com
научн. сотр.
Россия, СочиГлеб Олегович Маслов
Научно-технологический университет «Сириус»; Уральский федеральный университет
Email: maslovog6@gmail.com
научн. сотр.
Россия, Сочи; ЕкатеринбургКонстантин Андреевич Демин
Санкт-Петербургский государственный университет; Научно-технологический университет «Сириус»; Национальный медицинский исследовательский центр им. В.А. Алмазова
Email: deminkasci@gmail.com
SPIN-код: 3830-1853
канд. биол. наук, ст. научн. сотр.
Россия, Санкт-Петербург; Сочи; Санкт-ПетербургСергей Леонидович Хацко
Уральский федеральный университет
Email: hardscore@mail.ru
ORCID iD: 0000-0001-5921-6680
SPIN-код: 4973-7083
науч. сотр.
Россия, ЕкатеринбургАлан Валерьевич Калуев
Санкт-Петербургский государственный университет; Российский научный центр радиологии и хирургических технологий им. акад. А.М. Гранова; Научно-технологический университет «Сириус»; Национальный медицинский исследовательский центр им. В.А. Алмазова; Уральский федеральный университет; Новосибирский государственный университет; Научно-исследовательский институт нейронаук и медицины; Московский физико-технический институт
Автор, ответственный за переписку.
Email: avkalueff@gmail.com
ORCID iD: 0000-0002-7525-1950
SPIN-код: 4134-0515
д-р биол. наук, профессор
Россия, Санкт-Петербург; Санкт-Петербург; Сочи; Санкт-Петербург; Екатеринбург; Новосибирск; Новосибирск; МоскваСписок литературы
- de Abreu MS, Friend AJ, Demin KA, et al. Zebrafish models: do we have valid paradigms for depression? J Pharmacol Toxicol Methods. 2018;94(Pt. 2):16–22. doi: 10.1016/j.vascn.2018.07.002
- Ma L, Demin KA, Kolesnikova TO, et al. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov. 2017;12(10):995–1009. doi: 10.1080/17460441.2017.1362385
- Venzala E, Garcia-Garcia AL, Elizalde N, Tordera RM. Social vs. environmental stress models of depression from a behavioural and neurochemical approach. Eur Neuropsychopharmacol. 2013;23(7):697–708. doi: 10.1016/j.euroneuro.2012.05.010
- Rutter M. Commentary: Nature–nurture interplay in emotional disorders. J Child Psychol Psychiatry. 2003;44(7):934–944. doi: 10.1111/1469-7610.00178
- Haeffel GJ, Getchell M, Koposov RA, et al. Association between polymorphisms in the dopamine transporter gene and depression: evidence for a gene-environment interaction in a sample of juvenile detainees. Psychol Sci. 2008;19(1):62–69. doi: 10.1111/j.1467-9280.2008.02047.x
- Risch N, Herrell R, Lehner T, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009;301(23):2462–2471. doi: 10.1001/jama.2009.878
- Vahia VN. Diagnostic and statistical manual of mental disorders 5. Ind J Psychiatry. 2013;55(3):220–223. doi: 10.4103/0019-5545.117131
- The International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–752. doi: 10.1038/nature08185
- Vawter MP, Freed WJ, Kleinman JE. Neuropathology of bipolar disorder. Biol Psychiatry. 2000;48(6):486–504. doi: 10.1016/s0006-3223(00)00978-1
- Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25:1–27. doi: 10.1016/S0893-133X(01)00225-1
- Demin KA, Lakstygal AM, Chernysh MV, et al. The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states. J Neurosci Methods. 2020;337:108637. doi: 10.1016/j.jneumeth.2020.108637
- Nguyen M, Stewart AM, Kalueff AV. Aquatic blues: modeling depression and antidepressant action in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2014;55:26–39. doi: 10.1016/j.pnpbp.2014.03.003
- Fonseka TM, Wen X-Y, Foster J., Kennedy SH. Zebrafish models of major depressive disorders. J Neurosci Res. 2016;94(1):3–14. doi: 10.1002/jnr.23639
- Demin KA, Lakstygal AM, Krotova NA, et al. Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Sci Rep. 2020;10:19981. doi: 10.1038/s41598-020-75855-3
- Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression. Neuron. 2002;34(1):13–25. doi: 10.1016/s0896-6273(02)00653-0
- Halmai Z, Dome P, Vereczkei A, et al. Associations between depression severity and purinergic receptor P2RX7 gene polymorphisms. J Affect Disord. 2013;150(1):104–109. doi: 10.1016/j.jad.2013.02.033
- Roger S, Mei Z-Z, Baldwin JM, et al. Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions. J Psychiatr Res. 2010;44(6): 347–355. doi: 10.1016/j.jpsychires.2009.10.005
- Kyzar E, Stewart AM, Landsman S, et al. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res. 2013;1527:108–116. doi: 10.1016/j.brainres.2013.06.033
- Jie Z, Li T, Jia-Yun H, et al. Trans-2-phenylcyclopropylamine induces nerve cells apoptosis in zebrafish mediated by depression of LSD1 activity. Brain Res Bull. 2009;80(1–2):79–84. doi: 10.1016/j.brainresbull.2009.04.013
- Airhart MJ, Lee DH, Wilson TD, et al. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicol Teratol. 2007;29(6):652–664. doi: 10.1016/j.ntt.2007.07.005
- Demin KA, Kolesnikova TO, Khatsko SL, et al. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol Teratol. 2017;62:27–33. doi: 10.1016/j.ntt.2017.04.002
- Sackerman J, Donegan JJ, Cunningham CS, et al. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int J Comp Psychol. 2010;23(1):43–61.
- Wen D, Liu A, Chen F, et al. Validation of visualized transgenic zebrafish as a high throughput model to assay bradycardia related cardio toxicity risk candidates. J Appl Toxicol. 2012;32(10):834–842. doi: 10.1002/jat.2755
- Griffiths BB, Schoonheim PJ, Ziv L, et al. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci. 2012;6:68. doi: 10.3389/fnbeh.2012.00068
- Ranft K, Dobrowolny H, Krell D, et al. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med. 2010;40(40):557–567. doi: 10.1017/S0033291709990821
