Роль ключевых эндоканнабиноидов и их рецепторов при раке молочной железы
- Авторы: Акимов М.Г.1, Дудина П.В.1, Вьюнова Т.В.2, Калуев А.В.3,4,5,6,7, Грецкая Н.М.1, Безуглов В.В.1
-
Учреждения:
- Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова РАН
- Центр Life Improvement by Future Technologies «LIFT»
- Научно-технологический университет «Сириус»
- Национальный медицинский исследовательский центр им. В.А. Алмазова
- Санкт-Петербургский государственный университет
- Российский научный центр радиологии и хирургических технологий им. акад. А.М. Гранова
- Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
- Выпуск: Том 22, № 1 (2024)
- Страницы: 41-51
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/RCF/article/view/258599
- DOI: https://doi.org/10.17816/RCF623144
- ID: 258599
Цитировать
Аннотация
Рак молочной железы — главная причина смерти женщин от онкологических заболеваний. Эндоканнабиноиды и их экзогенные аналоги, например тетрагидроканнабинол, оказывают противоопухолевое действие в различных животных моделях рака. Однако некоторые исследования показали, что при определенных условиях лечение каннабиноидами может стимулировать пролиферацию раковых клеток in vitro и нарушать участие иммунной системы в подавлении опухолей. Имеются также противоречивые сообщения о роли самой эндоканнабиноидной системы при раке молочной железы. Целью настоящего обзора является рассмотрение основных механизмов действия ключевых лигандов и рецепторов эндоканнабиноидной системы в контексте рака молочной железы.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Михаил Геннадьевич Акимов
Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова РАН
Email: akimovmike@gmail.com
ORCID iD: 0000-0002-7467-4409
канд. хим. наук
Россия, МоскваПолина Валентиновна Дудина
Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова РАН
Email: polinadudkinz@gmail.com
ORCID iD: 0000-0001-6893-9100
Россия, Москва
Татьяна Владимировна Вьюнова
Центр Life Improvement by Future Technologies «LIFT»
Автор, ответственный за переписку.
Email: p2@list.ru
ORCID iD: 0000-0002-7273-5503
канд. биол. наук
Россия, МоскваАлан Валерьевич Калуев
Научно-технологический университет «Сириус»; Национальный медицинский исследовательский центр им. В.А. Алмазова; Санкт-Петербургский государственный университет; Российский научный центр радиологии и хирургических технологий им. акад. А.М. Гранова; Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
Email: avkalueff@gmail.com
ORCID iD: 0000-0002-7525-1950
SPIN-код: 4134-0515
д-р биол. наук
Россия, Сочи; Санкт-Петербург; Санкт-Петербург; Санкт-Петербург; ЕкатеринбургНаталья Михайловна Грецкая
Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова РАН
Email: natalia.gretskaya@gmail.com
ORCID iD: 0000-0002-1332-9396
канд. хим. наук
Россия, МоскваВладимир Виленович Безуглов
Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова РАН
Email: vvbez2013@yandex.ru
ORCID iD: 0000-0001-8439-8607
д-р хим. наук
Россия, МоскваСписок литературы
- Lord SJ, Kiely BE, Pearson SA, et al. Metastatic breast cancer incidence, site and survival in Australia, 2001–2016: a population-based health record linkage study protocol. BMJ Open. 2019;9(2): e026414. doi: 10.1136/bmjopen-2018-026414
- Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H. Cannabinoids for cancer treatment: progress and promise. Cancer Res. 2008;68(2):339–342. doi: 10.1158/0008-5472.CAN-07-2785
- Buczynski MW, Parsons LH. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br J Pharmacol. 2010;160(3):423–442. doi: 10.1111/j.1476-5381.2010.00787.x
- Nomura DK, Long JZ, Niessen S, et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140(1):49–61. doi: 10.1016/j.cell.2009.11.027
- Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res. 2023;89:101194. doi: 10.1016/j.plipres.2022.101194
- Soethoudt M, Grether U, Fingerle J, et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun. 2017;8(1):13958. doi: 10.1038/ncomms13958
- Lowe H, Toyang N, Steele B, et al. The endocannabinoid system: a potential target for the treatment of various diseases. Int J Mol Sci. 2021;22(17):9472. doi: 10.3390/ijms22179472
- Vinod KY, Hungund BL. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol Sci. 2006;27(10):539–545. doi: 10.1016/j.tips.2006.08.006
- Nagarkatti P, Pandey R, Rieder SA, et al. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem. 2009;1(7):1333–1349. doi: 10.4155/fmc.09.93
- Ramer R, Wittig F, Hinz B. The endocannabinoid system as a pharmacological target for new cancer therapies. Cancers (Basel). 2021;13(22):5701. doi: 10.3390/cancers13225701
- Lu HC, Mackie K. Review of the endocannabinoid system. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(6):607–615. doi: 10.1016/j.bpsc.2020.07.016
- Basavarajappa BS. Critical enzymes involved in endocannabinoid metabolism. Protein and peptide letters. 2007;14(3):237–246. doi: 10.2174/092986607780090829
- Nyilas R, Dudok B, Urbán GM, et al. Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. J Neurosci. 2008;28(5):1058–1063. doi: 10.1523/JNEUROSCI.5102-07.2008
- van der Stelt M, Trevisani M, Vellani V, et al. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J. 2005;24(17):3026–3037. doi: 10.1038/sj.emboj.7600784
- Di Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994;372(6507):686–691. doi: 10.1038/372686a0
- Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylgylcerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97. doi: 10.1006/bbrc.1995.2437
- De Petrocellis L, Melck D, Bisogno T, Di Marzo V. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chemistry and Physics of Lipids. 2000;108(1–2):191–209. doi: 10.1016/S0009-3084(00)00196-1
- Almeida CF, Teixeira N, Correia-da-Silva G, Amaral C. Cannabinoids in breast cancer: differential susceptibility according to subtype. Molecules. 2021;27(1):156. doi: 10.3390/molecules27010156
- Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1): D941–D947. doi: 10.1093/nar/gky1015
- Qamri Z, Preet A, Nasser MW, et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther. 2009;8(11):3117–3129. doi: 10.1158/1535-7163.MCT-09-0448
- Oka S, Kimura S, Toshida T, Ota R, Yamashita A, Sugiura T. Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem. 2010;147(5):671–678. doi: 10.1093/jb/mvp208
- Lauckner JE, Jensen JB, Chen HY, et al. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA. 2008;105(7):2699–2704. doi: 10.1073/pnas.0711278105
- Ford LA, Roelofs AJ, Anavi-Goffer S, et al. A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol. 2010;160(3):762–771. doi: 10.1111/j.1476-5381.2010.00743.x
- Andradas C, Blasco-Benito S, Castillo-Lluva S, et al. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer. Oncotarget. 2016;7(30):47565–47575. doi: 10.18632/oncotarget.10206
- Nasser MW, Qamri Z, Deol YS, et al. Crosstalk between chemokine receptor cxcr4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS ONE. 2011;6(9):e23901. doi: 10.1371/journal.pone.0023901
- Guzmán M. Cannabinoids: potential anticancer agents. Nat Rev Cancer. 2003;3(10):745–755. doi: 10.1038/nrc1188
- Laezza C, Pisanti S, Crescenzi E, Bifulco M. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells. FEBS Lett. 2006;580(26):6076–6082. doi: 10.1016/j.febslet.2006.09.074
- Caffarel MM, Moreno-Bueno G, Cerutti C, et al. JunD is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008;27(37):5033–5044. doi: 10.1038/onc.2008.145
- Weitzman JB, Fiette L, Matsuo K, Yaniv M. Jund protects cells from p53-dependent senescence and apoptosis. molecular Cell. 2000;6(5):1109–1119. doi: 10.1016/S1097-2765(00)00109-X
- Pérez-Gómez E, Andradas C, Blasco-Benito S, et al. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J Natl Cancer Inst. 2015;107(6):djv077. doi: 10.1093/jnci/djv077
- Caffarel MM, Andradas C, Mira E, et al. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer. 2010;9(1):196. doi: 10.1186/1476-4598-9-196
- Nithipatikom K, Gomez-Granados AD, Tang AT, et al. Cannabinoid receptor type 1 (CB1) activation inhibits small GTPase RhoA activity and regulates motility of prostate carcinoma cells. Endocrinology. 2012;153(1):29–41. doi: 10.1210/en.2011-1144
- Porter AC, Sauer JM, Knierman MD, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301(3):1020–1024. doi: 10.1124/jpet.301.3.1020
- Benchama O, Tyukhtenko S, Malamas MS, et al. Inhibition of triple negative breast cancer-associated inflammation, tumor growth and brain colonization by targeting monoacylglycerol lipase. Sci Rep. 2022;12(1):5328. doi: 10.1038/s41598-022-09358-8
- Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10(4):582–602. doi: 10.1016/j.apsb.2019.10.006
- Elbaz M, Ahirwar D, Ravi J, et al. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer. Oncotarget. 2017;8(18):29668–29678. doi: 10.18632/oncotarget.9408
- Bisogno T, Katayama K, Melck D, et al. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells. Eur J Biochem. 1998;254(3):634–642. doi: 10.1046/j.1432-1327.1998.2540634.x
- Gustafsson SB, Palmqvist R, Henriksson ML, et al. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage ii microsatellite stable colorectal cancer. PLOS One. 2011;6(8):e23003. doi: 10.1371/journal.pone.0023003
- Portella G, Laezza C, Laccetti P, et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J. 2003;17(12):1771–1773. doi: 10.1096/fj.02-1129fje
- Falasca M, Corda D. Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells. Eur J Biochem. 1994;221(1):383–389. doi: 10.1111/j.1432-1033.1994.tb18750.x
- Falasca M, Iurisci C, Carvelli A, et al. Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation. Oncogene. 1998;16(18):2357–2365. doi: 10.1038/sj.onc.1201758
- Xiao Y, Chen Y, Kennedy AW, et al. Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry (ESI-MS) analyses. Ann NY Acad Sci. 2000;905(1):242–259. doi: 10.1111/j.1749-6632.2000.tb06554.x
- Moreno E, Cavic M, Krivokuca A, et al. The endocannabinoid system as a target in cancer diseases: are we there yet? Frontiers in Pharmacology. 2019;10:339. doi: 10.3389/fphar.2019.00339
- Zhou XL, Guo X, Song YP, et al. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol Sin. 2018;39(3):459–471. doi: 10.1038/aps.2017.157
- Alhouayek M, Masquelier J, Muccioli GG. Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands. Trends Pharmacol Sci. 2018;39(6):586–604. doi: 10.1016/j.tips.2018.02.011
- Navarro G, Varani K, Lillo A, et al. Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacol Res. 2020;159:104940. doi: 10.1016/j.phrs.2020.104940
- Balenga NAB, Aflaki E, Kargl J, et al. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res. 2011;21(10):1452–1469. doi: 10.1038/cr.2011.60
- Kargl J, Balenga N, Parzmair GP, et al. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J Biol Chem. 2012;287(53):44234–44248. doi: 10.1074/jbc.M112.364109
- Anavi-Goffer S, Irving AJ, Ross RA. Modulation of l-α-lysophosphatidylinositol/GPR55 MAP kinase signalling by CB2 receptor agonists: identifying novel GPR55 inhibitors. J Basic Clin Physiol Pharmacol. 2016;27(3):303–310. doi: 10.1515/jbcpp-2015-0142
- Anavi-Goffer S, Baillie G, Irving AJ, et al. Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J Biol Chem. 2012;287(1):91–104. doi: 10.1074/jbc.M111.296020
- Zhang J, Medina-Cleghorn D, Bernal-Mizrachi L, et al. The potential relevance of the endocannabinoid, 2-arachidonoylglycerol, in diffuse large B-cell lymphoma. Oncoscience. 2016;3(1):31–41. doi: 10.18632/oncoscience.289
- Sailler S, Schmitz K, Jäger E, et al. Regulation of circulating endocannabinoids associated with cancer and metastases in mice and humans. Oncoscience. 2014;1(4):272–282. doi: 10.18632/oncoscience.33
- Suchopár J, Laštůvka Z, Mašková S, et al. Endocannabinoids. Ceska Gynekol. 2021;86(6):414–420. doi: 10.48095/cccg2021414
