Targeted delivery of the domestic anticancer drug from the group of aziridine triazines (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, the targeted delivery of anticancer drugs can significantly increase the effectiveness of therapy, reduce the side effects of systemic chemotherapy, and improve the quality of patients with cancer. This review aimed to summarize data about the domestic antitumor drug 2,4-bis(1-aziridinyl)-6-(2,2-dimethyl-5-hydroxymethyl-1,3-dioxan-5-yl)amino-1,3,5-thriazine (dioxadet), its nanoforms, possibilities of its use in the clinic, and main antitumor nanodrugs clinically introduced in recent years. Library databases (eLibrary, PubMed, CyberLeninka, ResearchGate, Springer, Wiley Online Library, and Elsevier) were searched for relevant information. The literature review summarizes data on the preclinical trials of dioxadet and provides information on its nanoforms, such as nanogels, nanodiamonds, silica particles, and copolymers with lactic and caproic acids. New drug nanoforms open up opportunities to reduce drug side effects and systemic toxicity, maintain optimal therapeutic concentrations, increase the drug circulation time in the blood, and control its release. The possibility of using chemopreparation cytotoxic doses is the main advantage of new nanodrugs. To date, approximately 20 antitumor nanodrugs have been introduced in clinical practice, and some nanodrugs are undergoing preclinical trials or are in various phases of clinical trials. Thus, the development of a new effective nanoform, i.e., dioxadet, makes it possible to ensure targeted drug delivery in higher cytotoxic doses to target cells, increase selective action, and reduce cytostatic toxicity to normal cells.

About the authors

Olesya A. Belyaeva

N.N. Petrov National Medical Research Centre of Oncology

Author for correspondence.
Email: belolesya@yandex.ru
ORCID iD: 0009-0004-2201-5796

MD, Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Dmitrii A. Kachanov

North-West State Medical University named after I.I. Mechnikov

Email: dmitrii.kachanovv@yandex.ru
ORCID iD: 0000-0003-1528-1899
SPIN-code: 4912-7511

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Alexander N. Stukov

N.N. Petrov National Medical Research Centre of Oncology

Email: stukov2008@yandex.ru
ORCID iD: 0000-0002-1741-6630
SPIN-code: 4652-8674

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Grigory V. Tochilnikov

N.N. Petrov National Medical Research Centre of Oncology

Email: gr75@mail.ru
ORCID iD: 0000-0003-4232-8170
SPIN-code: 4366-6930

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Andrey V. Pavlysh

North-West State Medical University named after I.I. Mechnikov

Email: andrei.pavlysh@szgmu.ru
ORCID iD: 0000-0002-7617-5822
SPIN-code: 5785-8324

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Yuliya G. Zmitrichenko

N.N. Petrov National Medical Research Centre of Oncology

Email: zmitrichenko@gmail.com
ORCID iD: 0000-0002-9137-9532
SPIN-code: 6122-3450
Russian Federation, Saint Petersburg

Valerii A. Alexandrov

N.N. Petrov National Medical Research Centre of Oncology

Email: alexandrov.valeri@yandex.ru
ORCID iD: 0000-0002-0019-2685
SPIN-code: 5124-5881

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Tatiana Yu. Semiglazova

N.N. Petrov National Medical Research Centre of Oncology

Email: tsemiglazova@mail.ru
ORCID iD: 0000-0002-4305-6691
SPIN-code: 9773-3759

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Aleksey M. Belyaev

N.N. Petrov National Medical Research Centre of Oncology

Email: belolesya@yandex.ru
ORCID iD: 0000-0001-5580-4821
SPIN-code: 9445-9473

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

References

  1. Orlova OL, Nikolaeva LL, Korol LA, et al. Modern onco drug for internal use. Pharmacy and Pharmacology. 2018;6(5):440–461. EDN: YNFURN doi: 10.19163/2307-9266-2018-6-5-440-461
  2. Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–976. doi: 10.1038/nbt994
  3. Gaucher G, Dufresne M-H, Sant VP, et al. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–188. doi: 10.1016/j.jconrel.2005.09.034
  4. Borisov AE, Gershanovich ML, Zemlyanoy VP, et al. Use of dioxadet for hepatic artery chemoembolisation in primary and metastatic liver cancer. Problems in oncology. 1998;44(6):714–717. (In Russ.)
  5. Granov AM, Gorelov AI, Gershanovich ML, et al. Results of endovascular interventions (embolisation and chemoembolisation) in the treatment of operable and advanced renal cancer. Problems in oncology. 1998;44(6):711–714. (In Russ.)
  6. Sherer C, Snape TJ. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur J Med Chem. 2015;97:552–560. doi: 10.1016/j.ejmech.2014.11.007
  7. Kharb R. Updates on receptors targeted by heterocyclic scaffolds: New horizon in anticancer drug development. Anticancer Agents Med Chem. 2021;21(11):1338–1349. doi: 10.2174/1871520620666200619181102
  8. Martins P, Jesus J, Santos S, et al. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s toolbox. Molecules. 2015;20(9):16852–16891. doi: 10.3390/molecules200916852
  9. Singla P, Luxami V, Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur J Med Chem. 2015;102:39–57. doi: 10.1016/j.ejmech.2015.07.037
  10. Cascioferro S, Parrino B, Spanò V, et al. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur J Med Chem. 2017;142:523–549. doi: 10.1016/j.ejmech.2017.09.035
  11. Ivin BA, Kreis BO, Korsakov MV, et al. Results of the study of ethyleniminotriazines. Problems in oncology. 1990;36(1):6–11. EDN: XBDBJH (In Russ.)
  12. Gershanovich ML, Filov VA, Kotova DG, et al. Results of a co-operative clinical study of the phase II antitumour drug dioxadat. Problems in oncology. 1998;44(2):216–220. (In Russ.)
  13. Bespalov VG, Stukov AN, Konkov SA, et al. Antitumour activity of ethyleniminotriazine in preclinical studies. Medline Express. 2011;2(3):53–57. (In Russ.)
  14. Bespalov VG, Belyaeva OA, Panchenko AV, et al. Comparative study of antitumour effects of cytostatics on the model of ascites ovarian tumour. Medline Express. 2011;2(3):48–52. (In Russ.)
  15. Voeikov R, Abakumova T, Grinenko N, et al. Dioxadet-loaded nanogels as a potential formulation for glioblastoma treatment. J Pharm Investig. 2017;47(1):75–83. doi: 10.1007/s40005-016-0294-4
  16. Korsakov MV, Filov VA, Kreis BO, et al. Model selection and estimation of parameters of pharmacokinetics of dioscadetine. Pharmaceutical Chemistry Journal. 1985;19(10):1175–1179. (In Russ.)
  17. Stukov AN, Korsakov MV, Khrapova TN, et al. Effect of dioxadet on tumours transplanted into the brain. Problems in oncology. 1986;32(10):64–67. (In Russ.)
  18. Ivin BA, Kreis BO, Malyugina LL, et al. Synthesis, structure, antitumour activity and toxicity of ethyleniminotriazines in experiment and clinic. In: Drug therapy of tumours in experiment and clinic. Leningrad: Prof. N.N. Petrov Research Institute of Oncology, 1983. P. 6–59.
  19. Filov VA, Stukov AN, Malyugina LL, Ivin BA. Study of antitumor activity and toxicity of dioxadet. Experimental oncology. 1996;18(1):84–86. EDN: MOTFCR
  20. Bespalov VG, Kireeva GS, Belyaeva OA, et al. Experimental study of antitumour activity and effects on leukocyte count of intraperitoneal administration and Hyperthermic Intraperitoneal Chemoperfusion (HIPEC) with dioxadet in a rat model of ovarian cancer. J Chemother. 2016;28(3):203–209. doi: 10.1179/1973947815y.0000000040
  21. Borisov AE, Gershanovich ML, Zemlyanoy VP, et al. Use of dioxadet in chemoembolisation of hepatic artery in primary and metastatic liver cancer. Problems in oncology. 1998;44(6):714–717. (In Russ.)
  22. Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151–167. doi: 10.1016/j.cell.2020.02.001
  23. Sanna V, Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies. ACS Med Chem Lett. 2020;11(6):1069–1073. doi: 10.1021/acsmedchemlett.0c00075.
  24. Raj S, Kumar D. Biochemical toxicology: Heavy metals and nanomaterials. In: Ince M, Ince OK, Ondrasek G, editors. Biochemical toxicology — heavy metals and nanomaterials. London: IntechOpen; 2020. 230 p. doi: 10.5772/intechopen.90928
  25. Nirmala MJ, Kizhuveetil U, Johnson A, et al. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. R Soc Chem. 2023;13(13):8606–8629. doi: 10.1039/d2ra07863e
  26. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(7):1038. doi: 10.1038/s41392-017-0004-3
  27. Singh AK. Engineered nanoparticles: structure, properties and mechanisms of toxicity. Boston: Academic Press; 2016. 544 p. doi: 10.1016/C2013-0-18974-X
  28. Al-Zoubi MS, Al-Zoubi RM. Nanomedicine tactics in cancer treatment: Challenge and hope. Crit Rev Oncol Hematol. 2022;174:103677. doi: 10.1016/j.critrevonc.2022.103677
  29. Beltran-Gracia E, Lopez-Camacho A, Higuera-Ciapara I, et al. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10(1):11. doi: 10.1186/s12645-019-0055-y
  30. Rommasi F, Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021;16(1):95. doi: 10.1186/s11671-021-03553-8
  31. Karabasz A, Bzowska M, Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature. Int J Neurol. 2020;15:8673–8696. doi: 10.2147/IJN.S231477
  32. Kedrova AG, Krasilnikov SE, Astakhov DA, Kosyy VV. Micellar paclitaxel in the treatment of patients with tumors of the female reproductive system. Tumors of female reproductive system. 2019;15(3): 37–43. EDN: QHILRK doi: 10.17650/1994-4098-2019-15-3-37-43
  33. Kim T-Y, Kim D-W, Chung J-Y, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004;10(11):3708–3716. doi: 10.1158/1078-0432.ccr-03-0655
  34. Kim SC, Kim DW, Shim YH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1–3):191–202. doi: 10.1016/s0168-3659(01)00275-9
  35. Quoc TH, Jin M. P1.01–31 Weekly regimen of PAXUS-PM, a novel cremophorfree, with carboplatin in patients with advanced non-small-cell lung cancer in Vietnam. J Thor Oncol. 2018;13(10S): 471–472. doi: 10.1016/j.jtho.2018.08.587
  36. aprin AD, Starinsky BB, Shakhzadova AO. Malignant neoplasms in Russia in 2021 (morbidity and mortality). Moscow: P.A. Herzen MNIOI — branch of NMC Radiology of the Ministry of Health of Russia; 2022. 252 p. (In Russ.)
  37. PDQ Adult Treatment Editorial Board. Ovarian, fallopian tube, and peritoneal cancer: Statistics. Available from: https://www.ncbi.nlm.nih.gov/books/NBK66007/
  38. Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–1805. doi: 10.1002/smll.201000538.
  39. Bagwe RP, Hilliard LR, Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir. 2006;22(9):4357–4362. doi: 10.1021/la052797j
  40. Lin W, Huang Y-w, Zhou X-D, Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217(3):252–259. doi: 10.1016/j.taap.2006.10.004
  41. Berdichevsky GM, Lopatina AS. Effect of conjugates of nanodiamonds with cytostatics doxorubicin and dioxadet on the functional activity of platelets. Actual problems of biomedicine. In: Vlasov TD, editor. Proceedings of the XXVII All-Russian conferences conferences of young scientists with international participation. Saint Petersburg; 2021 March 25–26. Saint Petersburg: Pavlov University; 2021. P. 209. (In Russ.)
  42. Berdichevskiy GM, Vasina LV, Ageev SV, et al. A comprehensive study of biocompatibility of detonation nanodiamonds. J Mol Liq. 2021;323:115763–115777. doi: 10.1016/j.molliq.2021.115763
  43. Berdichevskiy GM, Vasina LV, Galkin MA, et al. Investigation of the effect of detonation nanodiamonds and their conjugates with doxorubicin and dioxadet on the mitochondrial membrane. The Bulletin of Irkutsk State University. Series Biology. Ecology. 2022;41:3–18. EDN: JYURTG doi: 10.26516/2073-3372.2022.41.3
  44. Berdichevsky GM. Investigation of cytotoxic properties of conjugates of nanodiamonds with antitumour drugs (doxorubicin and dioxadet). In: Matveeva IV, Abalenikhina YV, Marsyanova SA, editors. Proceedings of the All-Russian conferences with international participations: “Biochemical scientific readings in memory of academician of the Russian Academy of Sciences E.A. Stroev”. Ryazan; 2022 Jan 26–27. Ryazan; 2022. P. 102. (In Russ.)
  45. Fan D, Cao Y, Cao M, et al. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8:293. doi: 10.1038/s41392-023-01536-y
  46. Bronich TK. Polymeric nanogels: new biomaterials for cancer drug delivery. Bulletin of Kazan Technological University. 2014;17(3):175–178. EDN: RXMGBP (In Russ.)
  47. Voeikov RV, Nukolova NV, Aleksashkin AD, et al. Loading of nanogels with antitumour drugs and study of their physicochemical properties. In: Andreyev AI, Andriyanov AV, Antipova EA, editors. International youth scientific forum “Lomonosov-2014”. Moscow: MAKS Press; 2014. (In Russ.)
  48. Yokoyama M, Miyauchi M, Yamada N, Okano T. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adryamicin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 1990;50:1700–1703.
  49. Yokoyama M, Okano T, Sakurai Y, et al. Introduction of cisplatin into polymeric micelle. J Control Release. 1996;39(2–3): 351–356. doi: 10.1016/0168-3659(95)00165-4
  50. Bennis S, Chapey C, Couvreur P, Robert J. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer. 1994;30(1):89–93. doi: 10.1016/S0959-8049(05)80025-5
  51. Tokunaga Y, Nakashima M, Shibata S, et al Antitumor effects of 4-pyridoxate diamine hydroxy platinum, a novel cisplatin derivative, against malignant gliomas in vitro and in vivo: a comparison with cisplatin. Pharm Sci. 1997;3:353–356.
  52. Lu Y-J, Wei K-C, Ma C-CM, et al. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf Biointerfaces. 2012;89:1–9. doi: 10.1016/j.colsurfb.2011.08.001
  53. Khiati S, Luvino D, Oumzil K, et al. Nucleoside lipid-based nanoparticles for cisplatin delivery. ACS Nano. 2011;5(11):8649–8655. doi: 10.1021/nn202291k
  54. Sinitsyna E, Bagaeva I, Gandalipov E, et al. Nanomedicines bearing an alkylating cytostatic drug from the group of 1,3,5-Triazine derivatives: Development and characterization. Pharmaceutics. 2022;14(11):2506. doi: 10.3390/pharmaceutics14112506
  55. Wang Y, Zheng Y, Zhang L, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–1141. doi: 10.1016/j.jconrel.2013.08.006
  56. Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(ε-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm. 2005;293(1–2):261–270. doi: 10.1016/j.ijpharm.2004.12.010

Copyright (c) 2024 ECO-vector LLC

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».