Properties and biological potential of single wall carbon nanohorns (SWCNH)
- Authors: Piotrovskiy L.B.1, Kudryavtseva T.A.1, Litasova E.V.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 18, No 3 (2020)
- Pages: 185-195
- Section: Reviews
- URL: https://journal-vniispk.ru/RCF/article/view/46875
- DOI: https://doi.org/10.17816/RCF183185-195
- ID: 46875
Cite item
Abstract
Nanohorns (or nanocons) are formed when pentagons are accumulated at the top of the formed nanocarbon structure. hey are a cone formed by one layer of graphene with a diameter of 2–4 nm and a length of 40–50 nm. The review considers the structure of these structures and their properties. The possibilities of using these structures in biology are described in detail.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Levon B. Piotrovskiy
Institute of Experimental Medicine
Author for correspondence.
Email: levon-piotrovsky@yandex.ru
Dr. Biol. Sci., Professor, Head, Laboratory of Nanotechnology of Drugs, Department of Neuropharmacology
Russian Federation, Saint PetersburgTatiana A. Kudryavtseva
Institute of Experimental Medicine
Email: tatyana@kudryavcev.info
PhD (Chemistry), Scientific Researcher, Laboratory of Nanotechnology of Drugs, Department of Neuropharmacology
Russian Federation, Saint PetersburgElena V. Litasova
Institute of Experimental Medicine
Email: llitasova@mail.ru
PhD (Pharmacology), Leading Researcher, Laboratory of Nanotechnology of Drugs, Dept of Neuropharmacology
Russian Federation, Saint PetersburgReferences
- Ebbesen TW. Cones and Tubes: Geometry in the Chemistry of Carbon. Acc Chem Res. 1998;31(9):558-566. https://doi.org/10.1021/ar960168i.
- Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309(3-4):165-170. https://doi.org/10.1016/s0009-2614(99)00642-9.
- Murata K, Kaneko K, Kokai F, et al. Pore structure of single-wall carbon nanohorn aggregates. Chem Phys Lett. 2000;331(1):14-20. https://doi.org/10.1016/s0009-2614(00)01152-0.
- Kasuya D, Yudasaka M, Takahashi K, et al. Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism. J Phys Chem B. 2002;106(19): 4947-4951. https://doi.org/10.1021/jp020387n.
- Xu J, Tomimoto H, Nakayama T. What is inside carbon nanohorn aggregates? Carbon. 2011;49(6):2074-2078. https://doi.org/10.1016/j.carbon.2011.01.042.
- Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev. 2016;116(8):4850-4883. https://doi.org/10.1021/acs.chemrev.5b00611.
- Suarez-Martinez I, Monthioux M, Ewels CP. Fullerene Interaction with Carbon Nanohorns. J Nanosci Nanotechnol. 2009;9(10):6144-6148. https://doi.org/10.1166/jnn.2009.1571.
- Yamaguchi T, Bandow S, Iijima S. Origin of giant graphite balls produced together with carbon nanohorns prepared by pulsed arc-discharge and a method for their removal. Carbon. 2008;46(7):1110. https://doi.org/10.1016/j.carbon.2008.04.005.
- Iijima S. Carbon nanotubes: past, present, and future. Physica B Condens Matter. 2002;323(1-4):1-5. https://doi.org/10.1016/s0921-4526(02)00869-4.
- Ajima K, Yudasaka M, Suenaga K, et al. Material Storage Mechanism in Porous Nanocarbon. Adv Mater. 2004;16(5): 397-401. https://doi.org/10.1002/adma.200306142.
- Azami T, Kasuya D, Yuge R, et al. Large-Scale Production of Single-Wall Carbon Nanohorns with High Purity. The J Phys Chem C. 2008;112(5):1330-1334. https://doi.org/10.1021/jp076365o
- Furmaniak S, Gauden PA, Patrykiejew A, et al. Carbon Nanohorns as Reaction Nanochambers – a Systematic Monte Carlo Study. Sci Rep. 2018;8(1). https://doi.org/10.1038/s41598-018-33725-z.
- Murata K, Hirahara K, Yudasaka M, et al. Nanowindow-Induced Molecular Sieving Effect in a Single-Wall Carbon Nanohorn. J Phys Chem B. 2002;106(49):12668-12669. https://doi.org/10.1021/jp026909g.
- Murata K, Kaneko K, Steele WA, et al. Molecular Potential Structures of Heat-Treated Single-Wall Carbon Nanohorn Assemblies. J Phys Chem B. 2001;105(42):10210-10216. https://doi.org/10.1021/jp010754f.
- Miyawaki J, Yudasaka M, Iijima S. Solvent Effects on Hole-Edge Structure for Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns. J Phys Chem B. 2004;108(30): 10732-10735. https://doi.org/10.1021/jp048970m.
- Tanigaki N, Murata K, Hayashi T, Kaneko K. Mild oxidation-production of subnanometer-sized nanowindows of single wall carbon nanohorn. J Colloid Interface Sci. 2018;529:332-336. https://doi.org/10.1016/j.jcis.2018.06.023.
- Utsumi S, Miyawaki J, Tanaka H, et al. Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J Phys Chem B. 2005;109(30):14319-14324. https://doi.org/10.1021/jp0512661.
- Fan J, Yuge R, Maigne A, et al. Effect of hole size on the incorporation of C60 molecules inside single-wall carbon nanohorns and their release. Carbon. 2008;46(13): 1792-1794. https://doi.org/10.1016/j.carbon.2008. 06.056.
- Fan J, Yudasaka M, Miyawaki J, et al. Control of Hole Opening in Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns Using Oxygen. J Phys Chem B. 2006;110(4): 1587-1591. https://doi.org/10.1021/jp0538870.
- Yudasaka M, Ajima K, Suenaga K, et al. Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chem Phys Lett. 2003;380(1-2):42-46. https://doi.org/10.1016/j.cplett.2003.08.095.
- Miyako E, Nagata H, Hirano K, et al. Photodynamic release of fullerenes from within carbon nanohorn. Chem Phys Lett. 2008;456(4-6):220-222. https://doi.org/10.1016/j.cplett.2008.03.044.
- Bekyarova E, Kaneko K, Yudasaka M, et al. Controlled Opening of Single-Wall Carbon Nanohorns by Heat Treatment in Carbon Dioxide. J Phys Chem B. 2003;107(19):4479-4484. https://doi.org/10.1021/jp026737n.
- Kuznetsova A, Mawhinney DB, Naumenko V, et al. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem Phys Lett. 2000;321(3-4):292-296. https://doi.org/10.1016/s0009-2614(00)00341-9.
- Zhang M, Yudasaka M, Ajima K, et al. Light-Assisted Oxidation of Single-Wall Carbon Nanohorns for Abundant Creation of Oxygenated Groups That Enable Chemical Modifications with Proteins To Enhance Biocompatibility. ACS Nano. 2007;1(4):265-272. https://doi.org/10.1021/nn700130f.
- Pagona G, Tagmatarchis N, Fan J, et al. Cone-End Functionalization of Carbon Nanohorns. Chem Mater. 2006;18(17):3918-3920. https://doi.org/10.1021/cm0604864.
- Petsalakis ID, Pagona G, Theodorakopoulos G, et al. Unbalanced strain-directed functionalization of carbon nanohorns: A theoretical investigation based on complementary methods. Chem Phys Lett. 2006;429(1-3):194-198. https://doi.org/10.1016/j.cplett.2006.08.014.
- Cioffi C, Campidelli S, Sooambar C, et al. Synthesis, Characterization, and Photoinduced Electron Transfer in Functionalized Single Wall Carbon Nanohorns. J Am Chem Soc. 2007;129(13):3938-3945. https://doi.org/10.1021/ja068007p.
- Tagmatarchis N, Maigné A, Yudasaka M, Iijima S. Functionalization of Carbon Nanohorns with Azomethine Ylides: Towards Solubility Enhancement and Electron-Transfer Processes. Small. 2006;2(4):490-494. https://doi.org/10.1002/smll.200500393.
- Cioffi C, Campidelli Sp, Brunetti FG, et al. Functionalisation of carbon nanohorns. Chem Comm. 2006(20):2129. https://doi.org/10.1039/b601176d.
- Pagona G, Rotas G, Petsalakis ID, et al. Soluble functionalized carbon nanohorns. J Nanosci Nanotechnol. 2007;7(10):3468-3472. https://doi.org/10.1166/jnn.2007.821.
- Economopoulos SP, Pagona G, Yudasaka M, et al. Solvent-free microwave-assisted Bingel reaction in carbon nanohorns. J Mater Chem. 2009;19(39):7326. https://doi.org/10.1039/b910947a.
- Mountrichas G, Pispas S, Tagmatarchis N. Grafting living polymers onto carbon nanohorns. Chemistry. 2007;13(27):7595-7599. https://doi.org/10.1002/chem.200700770.
- Pagona G, Sandanayaka ASD, Araki Y, et al. Covalent Functionalization of Carbon Nanohorns with Porphyrins: Nanohybrid Formation and Photoinduced Electron and Energy Transfer. Adv Funct Mater. 2007;17(10):1705-1711. https://doi.org/10.1002/adfm.200700039.
- Pagona G, Karousis N, Tagmatarchis N. Aryl diazonium functionalization of carbon nanohorns. Carbon. 2008;46(4):604-610. https://doi.org/10.1016/j.carbon. 2008.01.007.
- Zhu S, Xu G. Single-walled carbon nanohorns and their applications. Nanoscale. 2010;2(12):2538-2549. https://doi.org/10.1039/c0nr00387e.
- Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. – СПб.: Росток, 2006. – 335 с. [Piotrovskiy LB, Kiselev OI. Fullereny v biologii. Saint Peterbsburg: Rostok; 2006. 335 p. (In Russ.)]
- Pagona G, Fan J, Maignè A, et al. Aqueous carbon nanohorn-pyrene-porphyrin nanoensembles: Controlling charge-transfer interactions. Diam Relat Mater. 2007;16(4-7):1150-1153. https://doi.org/10.1016/j.diamond.2006.11.071.
- Miyawaki J, Yudasaka M, Azami T, et al. Toxicity of single-walled carbon nanohorns. ACS Nano. 2008;2(2):213-226. https://doi.org/10.1021/nn700185t.
- Lynch RM, Voy BH, Glass DF, et al. Assessing the pulmonary toxicity of single-walled carbon nanohorns. Nanotoxicology. 2009;1(2):157-166. https://doi.org/10.1080/17435390701598496.
- Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66(20):1909-1926. https://doi.org/10.1080/713853956.
- Isobe H, Tanaka T, Maeda R, et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew Chem Int Ed Engl. 2006;45(40):6676-6680. https://doi.org/10.1002/anie.200601718.
- Lacotte S, García A, Décossas M, et al. Interfacing Functionalized Carbon Nanohorns with Primary Phagocytic Cells. Adv Mater. 2008;20(12):2421-2426. https://doi.org/10.1002/adma.200702753.
- Chithrani BD, Ghazani AA, Chan WCW. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006;6(4):662-668. https://doi.org/10.1021/nl052396o.
- Hashimoto A, Yorimitsu H, Ajima K, et al. Selective deposition of a gadolinium(III) cluster in a hole opening of single-wall carbon nanohorn. Proc Natl Acad Sci USA. 2004;101(23):8527-8530. https://doi.org/10.1073/pnas. 0400596101.
- Yuge R, Ichihashi T, Shimakawa Y, et al. Preferential Deposition of Pt Nanoparticles Inside Single-Walled Carbon Nanohorns. Adv Mater. 2004;16(16):1420-1423. https://doi.org/10.1002/adma.200400130.
- Yuge R, Yudasaka M, Miyawaki J, et al. Controlling the incorporation and release of C60 in nanometer-scale hollow spaces inside single-wall carbon nanohorns. J Phys Chem B. 2005;109(38):17861-17867. https://doi.org/10. 1021/jp052814d.
- Murakami T, Ajima K, Miyawaki J, et al. Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm. 2004;1(6):399-405. https://doi.org/10.1021/mp049928e.
- Zhang M, Yudasaka M. Effect of nanocarbon sizes on the cellular uptake. Yakugaku Zasshi. 2013;133(2):151-156. https://doi.org/10.1248/yakushi.12-00244-1.
- Pippa N, Stangel C, Kastanas I, et al. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. Mater Sci Eng C Mater Biol Appl. 2019;105:110114. https://doi.org/10.1016/j.msec.2019.110114.
- Sano K, Ajima K, Iwahori K, et al. Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials. Small. 2005;1(8-9):826-832. https://doi.org/10.1002/smll.200500010.
- Kokubun K, Kashiwagi K, Yoshinari M, et al. Motif-programmed artificial extracellular matrix. Biomacromolecules. 2008;9(11):3098-3105. https://doi.org/10.1021/bm800638z.
- Matsumura S, Sato S, Yudasaka M, et al. Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer. Mol Pharm. 2009;6(2):441-447. https://doi.org/10.1021/mp800141v.
- Kase D, Kulp JL, 3rd, Yudasaka M, et al. Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability. Langmuir. 2004;20(20):8939-8941. https://doi.org/10.1021/la048968m.
- Matsumura S, Ajima K, Yudasaka M, et al. Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol Pharm. 2007;4(5):723-729. https://doi.org/10.1021/mp070022t.
- Ajima K, Yudasaka M, Murakami T, et al. Carbon nanohorns as anticancer drug carriers. Mol Pharm. 2005;2(6): 475-480. https://doi.org/10.1021/mp0500566.
- Kostarelos K. The long and short of carbon nanotube toxicity. Nat Biotechnol. 2008;26(7):774-776. https://doi.org/10.1038/nbt0708-774.
- Miyawaki J, Yudasaka M, Imai H, et al. In Vivo Magnetic Resonance Imaging of Single-Walled Carbon Nanohorns by Labeling with Magnetite Nanoparticles. Adv Mater. 2006;18(8):1010-1014. https://doi.org/10.1002/adma.200502174.
- Zhang M, Murakami T, Ajima K, et al. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci USA. 2008;105(39):14773-14778. https://doi.org/10.1073/pnas. 0801349105.
- Whitney JR, Sarkar S, Zhang J, et al. Single walled carbon nanohorns as photothermal cancer agents. Lasers Surg Med. 2011;43(1):43-51. https://doi.org/10.1002/lsm.21025.
- Whitney J, DeWitt M, Whited BM, et al. 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. Nanotechnology. 2013;24(27):275102. https://doi.org/10.1088/0957-4484/ 24/27/275102.
- Jiang BP, Hu LF, Shen XC, et al. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Appl Mater Interfaces. 2014;6(20):18008-18017. https://doi.org/10.1021/am504860c.
- Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 2008;25(1):55-71. https://doi.org/10.1007/s11095-007-9348-7.
- Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27(24):4356-4373. https://doi.org/10.1016/j.biomaterials.2006.03.039.
- Murakami T, Fan J, Yudasaka M, et al. Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol Pharm. 2006;3(4):407-414. https://doi.org/10.1021/mp060027a.
- Uto T, Wang X, Sato K, et al. Targeting of antigen to dendritic cells with poly(gamma-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J Immunol. 2007;178(5):2979-2986. https://doi.org/10.4049/jimmunol.178.5.2979.
- Yanagi K, Okazaki T, Miyata Y, Kataura H. Deactivation of singlet oxygen by single-wall carbon nanohorns. Chem Phys Lett. 2006;431(1-3):145-148. https://doi.org/10.1016/j.cplett.2006.09.078.
- Zhu S, Fan L, Liu X, et al. Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode. Electrochem Commun. 2008;10(5):695-698. https://doi.org/10.1016/j.elecom.2008.02.020.
- Puthongkham P, Yang C, Venton BJ. Carbon Nanohorn-Modified Carbon Fiber Microelectrodes for Dopamine Detection. Electroanalysis. 2018;30(6):1073-1081. https://doi.org/10.1002/elan.201700667.
- Liu X, Shi L, Niu W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosens Bioelectron. 2008;23(12):1887-1890. https://doi.org/10.1016/j.bios.2008.02.016.
- Shi L, Liu X, Niu W, et al. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens Bioelectron. 2009;24(5):1159-1163. https://doi.org/10.1016/j.bios.2008.07.001.
- Yang F, Han J, Zhuo Y, et al. Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens Bioelectron. 2014;55: 360-365. https://doi.org/10.1016/j.bios.2013.12.040.
- Tu W, Lei J, Ding L, Ju H. Sandwich nanohybrid of single-walled carbon nanohorns–TiO2 – porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol. Chem Commun. 2009;4227-4229. https://doi.org/10.1039/b906876g.
- Wen D, Xu X, Dong S. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy Environ Sci. 2011;4: 1358. https://doi.org/10.1039/C0EE00080A.
- Wen D, Deng L, Zhou M, et al. A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition. Biosens Bioelectron. 2010;25; 1544-1547. https://doi.org/10.1016/j.bios.2009.11.007.
- Lahiani MH, Chen J, Irin F, Puretzky AA, et al. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon. 2015;81:607-619. https://doi.org/10.1016/j.carbon.2014.09.095.
