Properties and biological potential of single wall carbon nanohorns (SWCNH)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nanohorns (or nanocons) are formed when pentagons are accumulated at the top of the formed nanocarbon structure. hey are a cone formed by one layer of graphene with a diameter of 2–4 nm and a length of 40–50 nm. The review considers the structure of these structures and their properties. The possibilities of using these structures in biology are described in detail.

About the authors

Levon B. Piotrovskiy

Institute of Experimental Medicine

Author for correspondence.
Email: levon-piotrovsky@yandex.ru

Dr. Biol. Sci., Professor, Head, Laboratory of Nanotechnology of Drugs, Department of Neuropharmacology

Russian Federation, Saint Petersburg

Tatiana A. Kudryavtseva

Institute of Experimental Medicine

Email: tatyana@kudryavcev.info

PhD (Chemistry), Scientific Researcher, Laboratory of Nanotechnology of Drugs, Department of Neuropharmacology

Russian Federation, Saint Petersburg

Elena V. Litasova

Institute of Experimental Medicine

Email: llitasova@mail.ru

PhD (Pharmacology), Leading Researcher, Laboratory of Nanotechnology of Drugs, Dept of Neuropharmacology

Russian Federation, Saint Petersburg

References

  1. Ebbesen TW. Cones and Tubes: Geometry in the Chemistry of Carbon. Acc Chem Res. 1998;31(9):558-566. https://doi.org/10.1021/ar960168i.
  2. Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309(3-4):165-170. https://doi.org/10.1016/s0009-2614(99)00642-9.
  3. Murata K, Kaneko K, Kokai F, et al. Pore structure of single-wall carbon nanohorn aggregates. Chem Phys Lett. 2000;331(1):14-20. https://doi.org/10.1016/s0009-2614(00)01152-0.
  4. Kasuya D, Yudasaka M, Takahashi K, et al. Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism. J Phys Chem B. 2002;106(19): 4947-4951. https://doi.org/10.1021/jp020387n.
  5. Xu J, Tomimoto H, Nakayama T. What is inside carbon nanohorn aggregates? Carbon. 2011;49(6):2074-2078. https://doi.org/10.1016/j.carbon.2011.01.042.
  6. Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev. 2016;116(8):4850-4883. https://doi.org/10.1021/acs.chemrev.5b00611.
  7. Suarez-Martinez I, Monthioux M, Ewels CP. Fullerene Interaction with Carbon Nanohorns. J Nanosci Nanotechnol. 2009;9(10):6144-6148. https://doi.org/10.1166/jnn.2009.1571.
  8. Yamaguchi T, Bandow S, Iijima S. Origin of giant graphite balls produced together with carbon nanohorns prepared by pulsed arc-discharge and a method for their removal. Carbon. 2008;46(7):1110. https://doi.org/10.1016/j.carbon.2008.04.005.
  9. Iijima S. Carbon nanotubes: past, present, and future. Physica B Condens Matter. 2002;323(1-4):1-5. https://doi.org/10.1016/s0921-4526(02)00869-4.
  10. Ajima K, Yudasaka M, Suenaga K, et al. Material Storage Mechanism in Porous Nanocarbon. Adv Mater. 2004;16(5): 397-401. https://doi.org/10.1002/adma.200306142.
  11. Azami T, Kasuya D, Yuge R, et al. Large-Scale Production of Single-Wall Carbon Nanohorns with High Purity. The J Phys Chem C. 2008;112(5):1330-1334. https://doi.org/10.1021/jp076365o
  12. Furmaniak S, Gauden PA, Patrykiejew A, et al. Carbon Nanohorns as Reaction Nanochambers – a Systematic Monte Carlo Study. Sci Rep. 2018;8(1). https://doi.org/10.1038/s41598-018-33725-z.
  13. Murata K, Hirahara K, Yudasaka M, et al. Nanowindow-Induced Molecular Sieving Effect in a Single-Wall Carbon Nanohorn. J Phys Chem B. 2002;106(49):12668-12669. https://doi.org/10.1021/jp026909g.
  14. Murata K, Kaneko K, Steele WA, et al. Molecular Potential Structures of Heat-Treated Single-Wall Carbon Nanohorn Assemblies. J Phys Chem B. 2001;105(42):10210-10216. https://doi.org/10.1021/jp010754f.
  15. Miyawaki J, Yudasaka M, Iijima S. Solvent Effects on Hole-Edge Structure for Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns. J Phys Chem B. 2004;108(30): 10732-10735. https://doi.org/10.1021/jp048970m.
  16. Tanigaki N, Murata K, Hayashi T, Kaneko K. Mild oxidation-production of subnanometer-sized nanowindows of single wall carbon nanohorn. J Colloid Interface Sci. 2018;529:332-336. https://doi.org/10.1016/j.jcis.2018.06.023.
  17. Utsumi S, Miyawaki J, Tanaka H, et al. Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J Phys Chem B. 2005;109(30):14319-14324. https://doi.org/10.1021/jp0512661.
  18. Fan J, Yuge R, Maigne A, et al. Effect of hole size on the incorporation of C60 molecules inside single-wall carbon nanohorns and their release. Carbon. 2008;46(13): 1792-1794. https://doi.org/10.1016/j.carbon.2008. 06.056.
  19. Fan J, Yudasaka M, Miyawaki J, et al. Control of Hole Opening in Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns Using Oxygen. J Phys Chem B. 2006;110(4): 1587-1591. https://doi.org/10.1021/jp0538870.
  20. Yudasaka M, Ajima K, Suenaga K, et al. Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chem Phys Lett. 2003;380(1-2):42-46. https://doi.org/10.1016/j.cplett.2003.08.095.
  21. Miyako E, Nagata H, Hirano K, et al. Photodynamic release of fullerenes from within carbon nanohorn. Chem Phys Lett. 2008;456(4-6):220-222. https://doi.org/10.1016/j.cplett.2008.03.044.
  22. Bekyarova E, Kaneko K, Yudasaka M, et al. Controlled Opening of Single-Wall Carbon Nanohorns by Heat Treatment in Carbon Dioxide. J Phys Chem B. 2003;107(19):4479-4484. https://doi.org/10.1021/jp026737n.
  23. Kuznetsova A, Mawhinney DB, Naumenko V, et al. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem Phys Lett. 2000;321(3-4):292-296. https://doi.org/10.1016/s0009-2614(00)00341-9.
  24. Zhang M, Yudasaka M, Ajima K, et al. Light-Assisted Oxidation of Single-Wall Carbon Nanohorns for Abundant Creation of Oxygenated Groups That Enable Chemical Modifications with Proteins To Enhance Biocompatibility. ACS Nano. 2007;1(4):265-272. https://doi.org/10.1021/nn700130f.
  25. Pagona G, Tagmatarchis N, Fan J, et al. Cone-End Functionalization of Carbon Nanohorns. Chem Mater. 2006;18(17):3918-3920. https://doi.org/10.1021/cm0604864.
  26. Petsalakis ID, Pagona G, Theodorakopoulos G, et al. Unbalanced strain-directed functionalization of carbon nanohorns: A theoretical investigation based on complementary methods. Chem Phys Lett. 2006;429(1-3):194-198. https://doi.org/10.1016/j.cplett.2006.08.014.
  27. Cioffi C, Campidelli S, Sooambar C, et al. Synthesis, Characterization, and Photoinduced Electron Transfer in Functionalized Single Wall Carbon Nanohorns. J Am Chem Soc. 2007;129(13):3938-3945. https://doi.org/10.1021/ja068007p.
  28. Tagmatarchis N, Maigné A, Yudasaka M, Iijima S. Functionalization of Carbon Nanohorns with Azomethine Ylides: Towards Solubility Enhancement and Electron-Transfer Processes. Small. 2006;2(4):490-494. https://doi.org/10.1002/smll.200500393.
  29. Cioffi C, Campidelli Sp, Brunetti FG, et al. Functionalisation of carbon nanohorns. Chem Comm. 2006(20):2129. https://doi.org/10.1039/b601176d.
  30. Pagona G, Rotas G, Petsalakis ID, et al. Soluble functionalized carbon nanohorns. J Nanosci Nanotechnol. 2007;7(10):3468-3472. https://doi.org/10.1166/jnn.2007.821.
  31. Economopoulos SP, Pagona G, Yudasaka M, et al. Solvent-free microwave-assisted Bingel reaction in carbon nanohorns. J Mater Chem. 2009;19(39):7326. https://doi.org/10.1039/b910947a.
  32. Mountrichas G, Pispas S, Tagmatarchis N. Grafting living polymers onto carbon nanohorns. Chemistry. 2007;13(27):7595-7599. https://doi.org/10.1002/chem.200700770.
  33. Pagona G, Sandanayaka ASD, Araki Y, et al. Covalent Functionalization of Carbon Nanohorns with Porphyrins: Nanohybrid Formation and Photoinduced Electron and Energy Transfer. Adv Funct Mater. 2007;17(10):1705-1711. https://doi.org/10.1002/adfm.200700039.
  34. Pagona G, Karousis N, Tagmatarchis N. Aryl diazonium functionalization of carbon nanohorns. Carbon. 2008;46(4):604-610. https://doi.org/10.1016/j.carbon. 2008.01.007.
  35. Zhu S, Xu G. Single-walled carbon nanohorns and their applications. Nanoscale. 2010;2(12):2538-2549. https://doi.org/10.1039/c0nr00387e.
  36. Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. – СПб.: Росток, 2006. – 335 с. [Piotrovskiy LB, Kiselev OI. Fullereny v biologii. Saint Peterbsburg: Rostok; 2006. 335 p. (In Russ.)]
  37. Pagona G, Fan J, Maignè A, et al. Aqueous carbon nanohorn-pyrene-porphyrin nanoensembles: Controlling charge-transfer interactions. Diam Relat Mater. 2007;16(4-7):1150-1153. https://doi.org/10.1016/j.diamond.2006.11.071.
  38. Miyawaki J, Yudasaka M, Azami T, et al. Toxicity of single-walled carbon nanohorns. ACS Nano. 2008;2(2):213-226. https://doi.org/10.1021/nn700185t.
  39. Lynch RM, Voy BH, Glass DF, et al. Assessing the pulmonary toxicity of single-walled carbon nanohorns. Nanotoxicology. 2009;1(2):157-166. https://doi.org/10.1080/17435390701598496.
  40. Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66(20):1909-1926. https://doi.org/10.1080/713853956.
  41. Isobe H, Tanaka T, Maeda R, et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew Chem Int Ed Engl. 2006;45(40):6676-6680. https://doi.org/10.1002/anie.200601718.
  42. Lacotte S, García A, Décossas M, et al. Interfacing Functionalized Carbon Nanohorns with Primary Phagocytic Cells. Adv Mater. 2008;20(12):2421-2426. https://doi.org/10.1002/adma.200702753.
  43. Chithrani BD, Ghazani AA, Chan WCW. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006;6(4):662-668. https://doi.org/10.1021/nl052396o.
  44. Hashimoto A, Yorimitsu H, Ajima K, et al. Selective deposition of a gadolinium(III) cluster in a hole opening of single-wall carbon nanohorn. Proc Natl Acad Sci USA. 2004;101(23):8527-8530. https://doi.org/10.1073/pnas. 0400596101.
  45. Yuge R, Ichihashi T, Shimakawa Y, et al. Preferential Deposition of Pt Nanoparticles Inside Single-Walled Carbon Nanohorns. Adv Mater. 2004;16(16):1420-1423. https://doi.org/10.1002/adma.200400130.
  46. Yuge R, Yudasaka M, Miyawaki J, et al. Controlling the incorporation and release of C60 in nanometer-scale hollow spaces inside single-wall carbon nanohorns. J Phys Chem B. 2005;109(38):17861-17867. https://doi.org/10. 1021/jp052814d.
  47. Murakami T, Ajima K, Miyawaki J, et al. Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm. 2004;1(6):399-405. https://doi.org/10.1021/mp049928e.
  48. Zhang M, Yudasaka M. Effect of nanocarbon sizes on the cellular uptake. Yakugaku Zasshi. 2013;133(2):151-156. https://doi.org/10.1248/yakushi.12-00244-1.
  49. Pippa N, Stangel C, Kastanas I, et al. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. Mater Sci Eng C Mater Biol Appl. 2019;105:110114. https://doi.org/10.1016/j.msec.2019.110114.
  50. Sano K, Ajima K, Iwahori K, et al. Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials. Small. 2005;1(8-9):826-832. https://doi.org/10.1002/smll.200500010.
  51. Kokubun K, Kashiwagi K, Yoshinari M, et al. Motif-programmed artificial extracellular matrix. Biomacromolecules. 2008;9(11):3098-3105. https://doi.org/10.1021/bm800638z.
  52. Matsumura S, Sato S, Yudasaka M, et al. Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer. Mol Pharm. 2009;6(2):441-447. https://doi.org/10.1021/mp800141v.
  53. Kase D, Kulp JL, 3rd, Yudasaka M, et al. Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability. Langmuir. 2004;20(20):8939-8941. https://doi.org/10.1021/la048968m.
  54. Matsumura S, Ajima K, Yudasaka M, et al. Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol Pharm. 2007;4(5):723-729. https://doi.org/10.1021/mp070022t.
  55. Ajima K, Yudasaka M, Murakami T, et al. Carbon nanohorns as anticancer drug carriers. Mol Pharm. 2005;2(6): 475-480. https://doi.org/10.1021/mp0500566.
  56. Kostarelos K. The long and short of carbon nanotube toxicity. Nat Biotechnol. 2008;26(7):774-776. https://doi.org/10.1038/nbt0708-774.
  57. Miyawaki J, Yudasaka M, Imai H, et al. In Vivo Magnetic Resonance Imaging of Single-Walled Carbon Nanohorns by Labeling with Magnetite Nanoparticles. Adv Mater. 2006;18(8):1010-1014. https://doi.org/10.1002/adma.200502174.
  58. Zhang M, Murakami T, Ajima K, et al. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci USA. 2008;105(39):14773-14778. https://doi.org/10.1073/pnas. 0801349105.
  59. Whitney JR, Sarkar S, Zhang J, et al. Single walled carbon nanohorns as photothermal cancer agents. Lasers Surg Med. 2011;43(1):43-51. https://doi.org/10.1002/lsm.21025.
  60. Whitney J, DeWitt M, Whited BM, et al. 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. Nanotechnology. 2013;24(27):275102. https://doi.org/10.1088/0957-4484/ 24/27/275102.
  61. Jiang BP, Hu LF, Shen XC, et al. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Appl Mater Interfaces. 2014;6(20):18008-18017. https://doi.org/10.1021/am504860c.
  62. Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 2008;25(1):55-71. https://doi.org/10.1007/s11095-007-9348-7.
  63. Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27(24):4356-4373. https://doi.org/10.1016/j.biomaterials.2006.03.039.
  64. Murakami T, Fan J, Yudasaka M, et al. Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol Pharm. 2006;3(4):407-414. https://doi.org/10.1021/mp060027a.
  65. Uto T, Wang X, Sato K, et al. Targeting of antigen to dendritic cells with poly(gamma-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J Immunol. 2007;178(5):2979-2986. https://doi.org/10.4049/jimmunol.178.5.2979.
  66. Yanagi K, Okazaki T, Miyata Y, Kataura H. Deactivation of singlet oxygen by single-wall carbon nanohorns. Chem Phys Lett. 2006;431(1-3):145-148. https://doi.org/10.1016/j.cplett.2006.09.078.
  67. Zhu S, Fan L, Liu X, et al. Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode. Electrochem Commun. 2008;10(5):695-698. https://doi.org/10.1016/j.elecom.2008.02.020.
  68. Puthongkham P, Yang C, Venton BJ. Carbon Nanohorn-Modified Carbon Fiber Microelectrodes for Dopamine Detection. Electroanalysis. 2018;30(6):1073-1081. https://doi.org/10.1002/elan.201700667.
  69. Liu X, Shi L, Niu W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosens Bioelectron. 2008;23(12):1887-1890. https://doi.org/10.1016/j.bios.2008.02.016.
  70. Shi L, Liu X, Niu W, et al. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens Bioelectron. 2009;24(5):1159-1163. https://doi.org/10.1016/j.bios.2008.07.001.
  71. Yang F, Han J, Zhuo Y, et al. Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens Bioelectron. 2014;55: 360-365. https://doi.org/10.1016/j.bios.2013.12.040.
  72. Tu W, Lei J, Ding L, Ju H. Sandwich nanohybrid of single-walled carbon nanohorns–TiO2 – porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol. Chem Commun. 2009;4227-4229. https://doi.org/10.1039/b906876g.
  73. Wen D, Xu X, Dong S. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy Environ Sci. 2011;4: 1358. https://doi.org/10.1039/C0EE00080A.
  74. Wen D, Deng L, Zhou M, et al. A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition. Biosens Bioelectron. 2010;25; 1544-1547. https://doi.org/10.1016/j.bios.2009.11.007.
  75. Lahiani MH, Chen J, Irin F, Puretzky AA, et al. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon. 2015;81:607-619. https://doi.org/10.1016/j.carbon.2014.09.095.

Copyright (c) 2020 Piotrovskiy L.B., Kudryavtseva T.A., Litasova E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».