AGE-RELATED CHANGES OF RELIABILITY OF ANTIOXIDANT ENZYME DEFENSE ARE ASSOCIATED WITH ADAPTIVE BEHAVIOR OF PRIMATES


Cite item

Full Text

Abstract

We have investigated age-related changes in the activity of antioxidant enzyme system and intensity of lipid peroxidation in erythrocytes of young and old female rhesus monkeys with depression-like and standard behavior. Revealed significant disturbances in the activities of GR and GSH-Px in monkeys with depression-like behavior are accompanied more pronounced age-related decrease in reliability of antioxidant enzyme defense and development of oxidative stress.

About the authors

Nadezda Dmitrievna Goncharova

Sochi State University

Email: ndgoncharova@mail.ru
Doctor of biological science, professor, Reserch Institute of Medical Primatology, Russian Academy of Medical Sciences

Viktor Yuryevich Marenin

Sochi State University

candidate of biological science, professor, Reserch Institute of Medical Primatology, Russian Academy of Medical Sciences

Arsen Arsenovich Vengerin

Sochi State University

candidate of biological science, professor, Reserch Institute of Medical Primatology, Russian Academy of Medical Sciences

Alla Vyacheslavovna Shmaliy

Sochi State University

candidate of medical science, professor, Reserch Institute of Medical Primatology, Russian Academy of Medical Sciences

References

  1. Гончарова Н. Д., Маренин В. Ю. Возрастные изменения функции гипоталамо-гипофизарно-адреналовой системы у индивидов с разным типом адаптивного поведения // Усп. геронтол. — 2009. — Т. 122, № 4. — С. 614–621.
  2. Andersen H. R., Jeune B., Nybo H. et al. Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians // Age Ageing. — 1998. — Vol. 27. — P. 643–648.
  3. Arthur P. G., Lim S. C. C., Meloni B. P. et al. The protective effect of hypoxic preconditioning on cortical neuronal cultures is associated with increases in the activity of several antioxidant enzymes // Brain Res. — 2004. — Vol. 1017. — P. 146–154.
  4. Baek S.-H., Min J. N., Park E. M. et al. Role of small heat shock protein hsp25 in radioresistance and glutathione-redox cycle // J. Cell Physiol. — 2000. — Vol. 183. — P. 100–107.
  5. Bednarek-Tupikowska G., Bohdanowicz-Pawlak A., Bidzinska B. et al. Serum lipid peroxide levels and erythrocyte glutathione peroxidase and superoxide dismutase activity in premenopausal and postmenopausal women // Gynecol. Endocrinology — 2001. — Vol. 15. — P. 298–303.
  6. Beluche I., Chaudieu I., Norton J. et al. Persistence of abnormal cortisol levels in elderly persons after recovery from major depression // J. Psychiatr. Res. — 2009. — Vol. 43. — P. 777–783.
  7. Beutler E. Red cell metabolism. A manual of biochemical methods. New York: Grune and Stratton, 1975.
  8. Bilici M., Efe H., Koroglu M. A. et al. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments // J. Affect Disord. — 2001. — Vol. 64. — P. 43–51.
  9. Blache D., Devaux S., Joubert O., Loreau N. et al. Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats // Free Radic. Biol. Med. — 2006. — Vol. 41. — P. 277–284.
  10. Bouayed J., Rammal H., Younos C., Soulimani R. Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice//Eur. J. Pharmacol. — 2007. — Vol. 564. — P. 146–149.
  11. Boyle M. P., Kolber B. J., Vogt Sh. K. et al. Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness // J. Neurosci. — 2006. — Vol. 26. — P. 1971–1978.
  12. Cadenas E., Davies K. J. A. Mitochondrial free radical generation, oxidative stress, and aging // Free Radic. Biol. Med. — 2000. — Vol. 29. — P. 222–230.
  13. Ceballos-Picot I., Trivier J. M., Nicole A. et al. Age-correlated modifications of copper-zinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes // Clin. Chem. — 1992. — Vol. 38. — P. 66–70.
  14. Ding Q., Luckhardt T., Hecker L. et al. New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis // Drugs — 2011. — Vol. 71. — P. 981–1001.
  15. Escobedo J., Pucci A. M., Koh T. J. Hsp25 protects skeletal muscle cells against oxidative stress // Free Radic. Biol. Med. — 2004. — Vol. 37. — P. 1455–1462.
  16. Genud R., Merenlender A., Gispan-Herman I. et al. DHEA lessen depressive-like behavior via GABA-ergic modulation of the mesolimbic system // Neuropsychopharmacology — 2009. — Vol. 34. — P. 577–584.
  17. Goncharova N. D. Hypothalamic-pituitary-adrenal axis and antioxidant enzymes: Circadian rhythms, stress, and aging // Front. Neuroendocrinol. — 2006. — Vol. 27. — P. 52–53.
  18. Goncharova N. D. Individual life history, behavior, and biomarkers of ageing // J. Nutrition, Health Aging — 2009. — Vol. 13, Suppl. 1. — P. S215.
  19. Goncharova N. D., Marenin V. Y., Oganyan T. E. Aging of the hypothalamic-pituitary-adrenal axis in nonhuman primates with depression-like and aggressive behavior // Aging — 2010. — Vol. 2. — P. 854–866.
  20. Goncharova N. D., Marenin V.Yu., Bogatyrenko T. N. Stress, aging and reliability of antioxidant enzyme defense. — Curr. Aging Sci. — 2008a. — Vol. 1. — P. 22–29.
  21. Goncharova N. D., Shmaliy A. V., Bogatyrenko T. N., Koltover V. K. Correlation between activi-ty of antioxidant enzymes and circadian rhythms of corticosteroids in Macaca mulatta monkeys of different age // Exp. Gerontol. — 2006. — Vol. 41. — P. 778–783.
  22. Goncharova N. D., Shmaliy A. V., Marenin V. Yu. et al. Circadian and age-related changes in stress responsiveness of the adrenal cortex and erythrocyte antioxidant enzymes in female rhesus monkeys // J. Med. Primatol. — 2008b. — Vol. 37. — P. 229–238.
  23. Harman D. Aging and oxidative stress // J. Int. Fed. Clin. Chem. — 1998. — Vol. 10. — P. 24–27.
  24. Haroon E., Raison C. L., Miller A. H. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior // Neuropsychopharmacology — 2012. — Vol. 37. — P. 137–162.
  25. Hickie I. B., Naismith S. L., Norrie L. M., Scott E. M. Managing depression across the life cycle: new strategies for clinicians and their patients // Intern. Med. J. — 2009. — Vol. 39. — P. 720–727.
  26. Hovatta I., Tennant R. S., Helton R. et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice // Nature — 2005. — Vol. 438. — P. 662–666.
  27. Janiak M., Suska M., Dudzińska W., Skotnicka E. Blood glutathione status and activity of glu-tathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training // J. Anim. Physiol. Anim. Nutrition — 2010. — Vol. 94. — P. 137–145.
  28. Johnson N. L., Leone F. C. Statistics and experimental design in engineering and the physical sciences. — New York: John Wiley, 1977.
  29. Johnson R. M., Goyette J. G., Ravindranath Y., Ho Y.-S. Hemoglobin autoxidation and regula-tion of endogenous H2O2 levels in erythrocytes // Free Radic. Biol. Med. — 2005. — Vol. 39. — P. 1407–1417.
  30. Khanzode S. D., Dakhale G. N., Khanzode S. S. et al. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors // Redox Rep. — 2003. — № 8. — P. 365–370.
  31. Kostiushov V. V., Bokal I. I., Petrov S. A. Study of activity of enzymes of antioxidant system of blood at HIV infection // Biomed. Khim. — 2010. — Vol. 56. — P. 596–601.
  32. Lisanti M. P., Martinez-Outschoorn U. E., Pavlides S. et al. Accelerated aging in the tumor mi-croenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine // Cell Cycle — 2011. — Vol. 10. — P. 2059–2063.
  33. Masood A., Nadeem A., Mustafa S. J., O`Donnell J. M. Reversal of oxidative stress-induced an-xiety by inhibition of phosphodiesterase-2 in mice // JPET — 2008. — Vol. 326. — P. 369–379.
  34. Naert G., Ixart G., Maurice T. et al. Brain-derived neurotropic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress // Mol. Cell Neurosci. — 2011. — Vol. 46, № 1. — P. 55–66.
  35. Nelson S. K., Bose S. K., Grunwald G. K. et al. The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy // Free Radic. Biol. Med. — 2006. — Vol. 40. — P. 341–347.
  36. Ozcan M. E., Gulec M., Ozerol E. et al. Antioxidant enzyme activities and oxidative stress in affective disorders // Int. Clin. Psychopharmacol. — 2004. — Vol. 19. — P. 89–95.
  37. Palasuwan A., Margaritis I., Soogarun S., Rousseau A. S. Dietary intakes and antioxidant status in mind-body exercising preand postmenopausal women // J. Nutr. Health Aging. — 2011. — Vol. 15. — P. 577–584.
  38. Preville X., Salvemini F., Giraud S. et al. Mammalian stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery // Exp. Cell Res. — 1999. — Vol. 247. — P. 61–78.
  39. Richmond R. L., Law J., Kay-Lambkin F. Physical, mental, and cognitive function in a convenience sample of centenarians in Australia//Am. Geriatr. Soc. — 2011. — Vol. 59. — P. 1080–1086.
  40. Russo A., Cesari M., Onder G. et al. Depression and physical function: Results from the aging and longevity study in the Sirente Geographic Area (ilSIRENTE Study) // J. Geriatr. Psychiatry Neurol. — 2007. — Vol. 20. — P. 131–137.
  41. Solas M., Aisa B., Mugueta M. C. et al. Interactions between age, stress and insulin on cogni-tion: Implications for Alzheimer’s disease // Neuropsychopharmacol. — 2010. — Vol. 35. — P. 1–10.
  42. Uchiyama M., Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test // Anal. Biochem. — 1978. — Vol. 86. — P. 271–278.
  43. Vreeburg S. A., Hoogendijk W. J., van Pelt J. et al. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study // Arch. Gen. Psychiatry — 2009. — Vol. 66. — P. 617–626.

Copyright (c) 2012 Goncharova N.D., Marenin V.Y., Vengerin A.A., Shmaliy A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».