Possibilities of pharmacological correction of reperfusion injury of ischemic myocardium (review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Timely and effective reperfusion in ischemia and reoxygenation in hypoxia of the heart muscle prevent myocardial infarction. Delayed reperfusion and reoxygenation in myocardial ischemia and hypoxia can cause reversible damage in it, which, with a favorable outcome, disappear without a trace. Excessively late reperfusion and reoxygenation inevitably ends with irreversible damage to the myocardium, which is widely known as a myocardial infarction, and which, together with other complications of cardiac ischemia, can cause disability and death of the patient. In recent years, reperfusion injury of the ischemic heart muscle has been recognized as an independent link in the pathogenesis of myocardial infarction. The mechanisms of this link of pathogenesis have been partially studied in experimental conditions. The phenomena of preconditioning and post-conditioning have been discovered, the effects of which are currently determined fairly reliably. After determining the mechanisms of reperfusion injury of the ischemic myocardium, the search and development of pharmacological agents capable of inducing such a phenomenon as cardioprotection began. In parallel, studies of specific microRNAs that claim to be diagnostic markers are being conducted, as well as the search for drugs that affect the level of their expression is being conducted. The information about the achieved successes in this direction is given.

About the authors

Konstantin G. Gurevich

A.I. Evdokimov Moscow State Medical and Dental University

Author for correspondence.
Email: kgurevich@mail.ru
ORCID iD: 0000-0002-7603-6064
SPIN-code: 4344-3045

MD, Dr. Sci. (Med.), Professor

Russian Federation, 20, p. 1, Delegatskaya str., Moscow, 127473

Aleksandr L. Urakov

Izhevsk State Medical Academy

Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-code: 1613-9660

MD, Dr. Sci. (Med.), Professor

Russian Federation, 281, st. Kommunarov, Udmurt Republic, Izhevsk, 426034

Eugeniy L. Fisher

Izhevsk State Medical Academy

Email: elfischer@mail.ru
SPIN-code: 6102-5539

doctor, postgraduate student

Russian Federation, 281, st. Kommunarov, Udmurt Republic, Izhevsk, 426034

Timer A. Abzalilov

Bashkir State Medical University

Email: timer_abzalilov@mail.ru
ORCID iD: 0000-0002-7044-2117
SPIN-code: 2539-9411

assistant professor

Russian Federation, 3, Lenina str., Ufa, 450008

Kseniya A. Khairzamanova

Bashkir State Medical University

Email: kzavadich@mail.ru
ORCID iD: 0000-0002-4792-7132
SPIN-code: 6489-9598

Cand. Sci. (Med.)

Russian Federation, 3, Lenina str., Ufa, 450008

Timur A. Yagudin

Bashkir State Medical University

Email: timk7@list.ru
ORCID iD: 0000-0001-6915-1673
SPIN-code: 5713-0671

assistant professor

Russian Federation, 3, Lenina str., Ufa, 450008

Aleksandr V. Samorodov

Bashkir State Medical University

Email: avsamorodov@gmail.com
ORCID iD: 0000-0001-9302-499X

MD, Dr. Sci. (Med.)

Russian Federation, 3, Lenina str., Ufa, 450008

References

  1. Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129(14):1483–1492. doi: 10.1161/CIRCULATIONAHA.113.004042
  2. Hausenloy DJ, Garcia-Dorado D, Bøtker HE, et al. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2017;113(6):564–585. doi: 10.1093/cvr/cvx049
  3. Pasupathy S, Tavella R, Beltrame JF. Myocardial Infarction with Nonobstructive Coronary Arteries (MINOCA): The Past, Present, and Future Management. Circulation. 2017;135(16):1490–1493. doi: 10.1161/CIRCULATIONAHA.117.027666
  4. Piccolo R, Giustino G, Mehran R, Windecker S. Stable coronary artery disease: revascularisation and invasive strategies. Lancet. 2015;386(9994):702–713. doi: 10.1016/S0140-6736(15)61220-X
  5. Xiao Y, Chen W, Zhong Z, et al. Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway. Biomed Pharmacother. 2020;127:110148. doi: 10.1016/j.biopha.2020.110148
  6. Caricati-Neto A, Ruggero Errante P, Menezes-Rodrigues FS. Recent Advances in Pharmacological and Non-Pharmacological Strategies of Cardioprotection. Int J Mol Sci. 2019;20(16):4002. doi: 10.3390/ijms20164002
  7. Jovanović A. Cardioprotective signalling: past, present and future. Eur J Pharmacol. 2018;833:314–319. doi: 10.1016/j.ejphar.2018.06.029
  8. Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget Strategies to Reduce Myocardial Ischemia / Reperfusion Injury: JACC Review Topic of the Week. J Amer Coll Cardiol. 2019;73(1):89–99. doi: 10.1016/j.jacc.2018.09.086
  9. Inserte J, Hernando V, Vilardosa U, et al. Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Amer Heart Assoc. 2013;2(1): e005975. doi: 10.1161/JAHA.112.005975
  10. Alburquerque-Béjar JJ, Barba I, Inserte J, et al. Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc Res. 2015;107(2):246–254. doi: 10.1093/cvr/cvv171
  11. Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116(4):674–699. doi: 10.1161/CIRCRESAHA.116.305348
  12. Kleinbongard P, Skyschally A, Heusch G. Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch. 2017;469(2):159–181. doi: 10.1007/s00424-016-1922-6
  13. Jašová M, Kancirová I, Waczulíková I, Ferko M. Mitochondria as a target of cardioprotection in models of preconditioning. J Bioenerg Biomembr. 2017;49(5):357–368. doi: 10.1007/s10863-017-9720-1
  14. Ong S-B, Dongworth RK, Cabrera-Fuentes HA, Hausenloy DJ. Role of the MPTP in conditioning the heart – translatability and mechanism. Brit J Pharmacol. 2015;172(8):2074–2084. doi: 10.1111/bph.13013
  15. LaPenna KB, Polhemus DJ, Doiron JE, et al. Hydrogen Sulfide as a Potential Therapy for Heart Failure-Past, Present, and Future. Antioxidants (Basel). 2021;10(3):485. doi: 10.3390/antiox10030485
  16. Chen Y, Zhang F, Yin J, et al. Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol. 2020;235(12):9059–9070. doi: 10.1002/jcp.29761
  17. Andreadou I, Schulz R, Papapetropoulos A, et al. The role of mitochondrial reactive oxygen species, NO and H2S in ischaemia / reperfusion injury and cardioprotection. J Cell Mol Med. 2020;24(12):6510–6522. doi: 10.1111/jcmm.15279
  18. Chen FE, Mandel RM, Woods JJ, et al. Biocompatible metal-organic frameworks for the storage and therapeutic delivery of hydrogen sulfide. Chem Sci. 2021;12(22):7848–7857. doi: 10.1039/d1sc00691f
  19. Alquwaizani M, Buckley L, Adams Ch, Fanikos J. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr Emerg Hosp Med Rep. 2013;1(2):83–97. doi: 10.1007/s40138-013-0014-6
  20. Lu S, Tian Y, Luo Y, et al. Iminostilbene, a novel small-molecule modulator of PKM2, suppresses macrophage inflammation in myocardial ischemia-reperfusion injury. J Adv Res. 2020;29:83–94. doi: 10.1016/j.jare.2020.09.001
  21. Seefeldt JM, Lassen ThR, Hjortbak MV, et al. Cardioprotective effects of empagliflozin after ischemia and reperfusion in rats. Sci Rep. 2021;11(1):9544. doi: 10.1038/s41598-021-89149-9
  22. Wang L, Li N, Wang F, Cui L. P2Y12 inhibition in macrophages reduces ventricular arrhythmias in rats after myocardial ischemia-reperfusion. Adv Clin Exp Med. 2021;30(4):413–420. doi: 10.17219/acem/133139
  23. Khaliulin I, Ascione R, Maslov LN, et al. Preconditioning or postconditioning with 8-br-cAMP-AM protects the heart against regional ischemia and reperfusion: a role for mitochondrial permeability transition. Cells. 2021;10(5):1223. doi: 10.3390/cells10051223
  24. Tsai K-L, Hsieh P-L, Chou W-C, et al. Dapagliflozin attenuates hypoxia / reoxygenation-caused cardiac dysfunction and oxidative damage through modulation of AMPK. Cell Biosci. 2021;11(1):44. doi: 10.1186/s13578-021-00547-y
  25. Shanmugam K, Boovarahan SR, Prem P, et al. Fisetin attenuates myocardial ischemia-reperfusion injury by activating the reperfusion injury salvage kinase (RISK) signaling pathway. Front Pharmacol. 2021;12:566470. doi: 10.3389/fphar.2021.566470
  26. Mongkolpathumrat P, Kijtawornrat A, Prompunt E, et al. Post-ischemic treatment of recombinant human secretory leukocyte protease inhibitor (rhSLPI) reduced myocardial ischemia / reperfusion injury. Biomedicines. 2021;9(4):422. doi: 10.3390/biomedicines9040422
  27. Chen C, Lin Q, Zhu X-Y, et al. Pre-clinical evidence: berberine as a promising cardioprotective candidate for myocardial ischemia/reperfusion injury, a systematic review, and meta-analysis. Front Cardiovasc Med. 2021;8:646306. doi: 10.3389/fcvm.2021.646306
  28. Schumacher D, Curaj A, Staudt M, et al. Phosphatidylserine supplementation as a novel strategy for reducing myocardial infarct size and preventing adverse left ventricular remodeling. Int J Mol Sci. 2021;22(9):4401. doi: 10.3390/ijms22094401
  29. Yang Y-F, Wang H, Song N, et al. Dexmedetomidine attenuates ischemia/reperfusion-induced myocardial inflammation and apoptosis through inhibiting endoplasmic reticulum stress signaling. J Inflamm Res. 2021;14:1217–1233. doi: 10.2147/JIR.S292263
  30. Nesti L, Tricò D, Mengozzi A, Natali A. Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug. Cardiovasc Diabetol. 2021;20(1):109. doi: 10.1186/s12933-021-01294-7
  31. Lieder HR, Braczko F, Gedik N, et al. Cardioprotection by post-conditioning with exogenous triiodothyronine in isolated perfused rat hearts and isolated adult rat cardiomyocytes. Basic Res Cardiol. 2021;116(1):27. doi: 10.1007/s00395-021-00868-6
  32. Feige K, Rubbert J, Raupach A, et al. Cardioprotective properties of mannitol-involvement of mitochondrial potassium channels. Int J Mol Sci. 2021;22(5):2395. doi: 10.3390/ijms22052395
  33. Marysheva VV, Mikheev VV, Shabanov PD. Evaluation of the activity of antihypoxants with an isothiourea structure in a model of hypercapnic hypoxia with a shutdown of the cerebral hemispheres. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1):55–63. (In Russ). doi: 10.17816/RCF19155-63
  34. Li T, Yin Y, Mu N, et al. Metformin-enhanced cardiac AMP-activated protein kinase/atrogin-1 pathways inhibit charged multivesicular body protein 2B accumulation in ischemia-reperfusion injury. Front Cell Dev Biol. 2021;8:621509. doi: 10.3389/fcell.2020.621509
  35. Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging (Albany NY). 2021;13(6):7828–7845. doi: 10.18632/aging.202858
  36. Torregroza C, Yueksel B, Ruske R, et al. Combination of cyclosporine A and levosimendan induces cardioprotection under acute hyperglycemia. Int J Mol Sci. 2021;22(9):4517. doi: 10.3390/ijms22094517
  37. Ma H, Li Y, Hou T, et al. Sevoflurane postconditioning attenuates hypoxia / reoxygenation injury of cardiomyocytes under high glucose by Regulating HIF-1α/MIF/AMPK pathway. Front Pharmacol. 2021;11:624809. doi: 10.3389/fphar.2020.624809
  38. Wang D, Cao H, Wang X, et al. SIRT1 is required for exercise-induced beneficial effects on myocardial ischemia / reperfusion injury. J Inflamm Res. 2021;14:1283–1296. doi: 10.2147/JIR.S300997
  39. Lee Y, Im E. Regulation of miRNAs by natural antioxidants in cardiovascular diseases: focus on SIRT1 and eNOS. Antioxidants (Basel). 2021;10(3):377. doi: 10.3390/antiox10030377
  40. Huang Z, He Y, Li Q-J, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting complement activation and upregulation of miR-499. Exp Ther Med. 2021;22(1):684. doi: 10.3892/etm.2021.10116
  41. Zhou R, Jia Y, Wang Y, et al. Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1. Amer J Transl Res. 2021;13(4):2350–2364.

Copyright (c) 2021 Gurevich K.G., Urakov A.L., Fisher E.L., Abzalilov T.A., Khairzamanova K.A., Yagudin T.A., Samorodov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».