Молекулярные механизмы действия антиатеросклеротических препаратов
- Авторы: Лизунов А.В.1, Бычков Е.Р.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 19, № 3 (2021)
- Страницы: 291-301
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/RCF/article/view/82950
- DOI: https://doi.org/10.17816/RCF193291-301
- ID: 82950
Цитировать
Аннотация
Цель этого обзора — анализ молекулярных механизмов липидного обмена, их нарушений, приводящих к атеросклерозу, и влияния современных антиатерогенных и антигиперлипидемических средств на эти механизмы. Приведена общая характеристика атеросклероза как патологии, основных его характеристик и факторов. Рассматривается вопрос комплексности лечения при атеросклерозе и возникающих в связи с этим проблем, а также актуальные модели природы атеросклеротических поражений, современные антиатеросклеротические препараты, применяемые в клинической практике, дается их номенклатура, разбираются их базовые биохимические механизмы, характер действия, негативные действия и побочные эффекты. Детально показаны молекулярные и генетические механизмы, связанные с атеросклерозом. Рассмотрены гены, связанные с липидным обменом и формированием атеросклеротических бляшек, их экспрессия и регуляция. Освещается вопрос влияния известных антиатеросклеротических средств на их экспрессию. Дано описание группы препаратов азолы, их влияние на липидный обмен в свете поиска новых антиатерогенных препаратов. В заключительной части обзора разбирается вопрос актуальности поиска новых антиатеросклеротических средств и методы моделирования дислипидемии, как модели состояний, коррелирующих с антиатеросклеротическими поражениями сосудов. Был сделан вывод о перспективности поиска антиатерогенных препаратов среди производных имидазола.
Полный текст
Открыть статью на сайте журналаОб авторах
Алексей Владимирович Лизунов
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: izya12005@yandex.ru
ORCID iD: 0000-0001-6458-5683
SPIN-код: 8912-3238
аспирант
Россия, 197376, Санкт-Петербург, ул. Академика Павлова, д. 12Евгений Рудольфович Бычков
Институт экспериментальной медицины
Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
кандидат медицинских наук
Россия, 197376, Санкт-Петербург, ул. Академика Павлова, д. 12Список литературы
- Akhmedzhanov NM, Nebieridze DV, Safaryan AS, et al. Analysis of hypercholesterolemia prevalence in the outpatient practice (according to the Аrgo study): part I. Rational pharmacotherapy in cardiology. 2015;11(3): 253–260. (In Russ.) doi: 10.20996/1819-6446-2015-11-3-253-260
- Belenkov YuN, Sergienko IV, Lyakishev AA, Kukharchuk VV. Statiny v sovremennoi kardiologicheskoi praktike. Moscow: 2010. 64 p. (In Russ.)
- Gusev EYu, Zotova NV, Zhuravleva YuA, Chereshnev VA. Physiological and pathogenic role of scavenger receptors in humans. Medical Immunology (Russia). 2020;22(1):7–48. (In Russ.) doi: 10.15789/1563-0625-PAP-1893
- Klyueva NN, Okunevich IV, Parfenova NS, Shabanov PD. Correction of experimental dislipoproteinemia by the intranasal administration of an original enzyme preparation. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(2):155–160. (In Russ.) doi: 10.17816/RCF182155-160
- Lizunov AV, Okunevich IV, Orlov SV, et al. Effects of сramizol on expression of the apoa1 gene in rats with experimental hyperlipidemia. Biomeditsinskaya Khimiya. 2019;65(5):403–406. (In Russ.) doi: 10.18097/PBMC20196505403
- Lizunov AV, Okunevich IV, Lebedev AA, et al. Molecular mechanisms of the cytoprotector cramizol effect in the experimental dyslipidemia model. Biomeditsinskaya Khimiya. 2020;66(4):326–331. (In Russ.) doi: 10.18097/PBMC20206604326
- Nasonov EL, Popkova TV. Atherosclerosis: perspectives of anti-inflammatory therapy. Therapeutic archive. 2018;90(5):4–12. (In Russ.) doi: 10.26442/terarkh20189054-12
- Okunevich IV. Gipolipidemicheskaya terapiya dislipoproteidemii statinami: ikh rol’ v kompleksnom lechenii ateroskleroza. Reviews on Clinical Pharmacology and Drug Therapy. 2004;3(4): 2–14. (In Russ.)
- Okunevich IV, Klyueva NN, Parfenova NS, Belova EV. Lipid-lowering and anti-atherosclerotic activity of the natural original enzyme preparation in the experiment. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(3):79–84. (In Russ.) doi: 10.17816/RCF17379-84
- Okunevich IV, Sapronov NS. The analysis of the combined aplication of levopa: the contribution of the hypolipidemic property of l-dopa on the metabolic action in patients with cardiac heart disease. Reviews on Clinical Pharmacology and Drug Therapy. 2011;9(3): 65–70. (In Russ.)
- Okunevich IV, Khnychenko LK, Sapronov NS. The hypolipidemic and antiatherosclerotic activity of sympatholytic reserpine: the experimental data. Arterial’naya Gipertenziya. 2007;13(2):136–140. (In Russ.) doi: 10.18705/1607-419X-2007-13-2-136-140
- Okunevich IV, Khnychenko LK, Shabanov PD. Influence of hypoxen on the data changing of lipid metabolsim in the experimantal dislipoproteinemia. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(3):26–29. (In Russ). doi: 10.17816/RCF12326-29
- Patent RUS № 218.016.8363/2018. Piotrovskii LB, Brusina MA, Nikolaev DN. Sposob polucheniya 1- i 1,2-dialkil(aril)-imidazol-4,5-dikarbonovykh kislot. (In Russ.)
- Titova GI, Klyueva NN, Kozhevnikova KA, Klimov AN. Vzaimodeistvie kholesterina s apoproteinom E – argininbogatym belkom lipoproteinov ochen’ nizkoi plotnosti. Biochemistry. 1980;45(1):51–55. (In Russ).
- Khnychenko LK, Selina EN, Rodionova OM, et al. Wound healing effect benzosulfonate 1-ethyl-3-methyl-4,5-bis(N-methylcarbamoyl) imidazolium. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(3):229–235 (In Russ.) doi: 10.17816/RCF183229-235
- Khnychenko LK, Okunevich IV, Losev NA, Sapronov NS. Hypolipidemic activity of n-cholinergic antagonist benzohexonium in the experiments. Pathological physiology and experimental therapy. 2016;60(1):36–43. (In Russ.) doi: 10.25557/0031-2991.2016.01.%25p
- Khorolskaya VG, Gureev AP, Shaforostova EA, et al. The fenofibrate effect on genotoxicity in brain and liver and on the expression of genes regulating fatty acids metabolism of mice. Biomeditsinskaya Khimiya. 2019;65(5):388–397. (In Russ.) doi: 10.18097/PBMC20196505388
- Adams SP, Sekhon SS, Wright JM. Lipid-lowering efficacy of rosuvastatin. Cochrane Database Syst Rev. 2014;11:1–217. doi: 10.1002/14651858.CD010254.pub2
- Baigent C, Blackwell L, Emberson J. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of datafrom 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–1681. doi: 10.1016/S0140-6736(10)61350-5
- Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ. Effect of statins on HDL-C: a complex process unrelated to changesin LDL-C: analysis of the VOYAGER Database. J Lip Res. 2010;51(6):1546–1553. doi: 10.1194/jlr.P002816
- Bays H. Statin safety: an overview and assessment of the data 2005. Am J Cardiol. 2006;97(8):6–27. doi: 10.1016/j.amjcard.2005.12.006
- Bodor ET, Offermanns S. Nicotinic acid: an old drug with a promising future. Br J Pharmacol. 2008;153(1):68–75. doi: 10.1038/sj.bjp.0707528
- Bolanos-Garcia VM, Miguel RN. Review: On the structure and function of apolipoproteins: more than a family of lipid-binding proteins. Progr Biophys Mol Biol. 2003;83(1):47–68. doi: 10.1016/S0079-6107(03)00028-2
- Burri L, Thoresen GH, Berge RK. The Role of PPAR Activation in Liver and Muscle. PPAR Res. 2010;2010:542359. doi: 10.1155/2010/542359
- Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to Statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–2397. doi: 10.1056/NEJMoa1410489
- Cohen JC, Wang Z, Grundy SM, et al. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J Clin Invest. 1994;94(6):2377–2384. doi: 10.1172/JCI117603
- Collins RG, Velji R, Guevara NV, et al. P-selectin or intercellular adhesion molecule (ICAM-1) deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191(1):189–194. doi: 10.1084/jem.191.1.189
- Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988;8(1):1–21. doi: 10.1161/01.atv.8.1.1
- Debin L, Silver DL. Fenofibrate induces a novel degradation pathway for scavenger receptor B-I independent of PDZK1. J Biol Chem. 2005;280(24):23390–23396. doi: 10.1074/jbc.M502777200
- Fitz NF, Tapias V, Cronican AA, et al. Opposing effects of Apoe/Apoa1 double deletion on amyloid-β pathology and cognitive performance in APP mice. Brain. 2015;138(12):3699–3715. doi: 10.1093/brain/awv293
- Gabriel DA, Pinilla-Monsalve LJ, Pachajoa H, et al. Novel APOC2 Mutation in a Colombian Patient with Recurrent Hypertriglyceridemic Pancreatitis. Appl Clin Genetics. 2020;13:63–69. doi: 10.2147/TACG.S243148
- Garbacz WG, Peipei L, Miller TM, et al. Hepatic Overexpression of CD36 Improves Glycogen Homeostasis and Attenuates High-FatDiet-Induced Hepatic Steatosis and Insulin Resistance. Mol Cell Biol. 2016;36(21):2715–2727. doi: 10.1128/MCB.00138-16
- Gibson CM, Korjian S, Tricoci P, et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I event reducing in ischemic syndromes I). Circulation. 2016;134(24):1918–1930. doi: 10.1161/CIRCULATIONAHA.116.025687
- Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combi-nation lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–1574. doi: 10.1056/NEJMoa1001282
- Gsaller F, Hortschansky P, Furukawa C. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex. TPLoS Pathogens. 2016;12(12):1–22. doi: 10.1371/journal.ppat.1005775
- Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low densitylipoprotein-deficient mice. Mol Cell. 1998;2(2):275–281. doi: 10.1016/s1097-2765(00)80139-2
- Gupta AK, Sexton RC, Rudney H. Differential regulation of low density lipoprotein suppression of HMG-CoA reductase activity in cultured cells by inhibitors of cholesterol biosynthesis. J Lipid Res. 1990;31:203–215. doi: 10.1016/S0022-2275(20)43206-7
- Jukema JW, Cannon CP, de Craen AJ, et al. The controversies of statin therapy: weighing the evidence. J Amer Coll Cardiol. 2012;60(10):875–881. doi: 10.1016/j.jacc.2012.07.007
- Lizunov AV, Okunevich IV, Orlov SV, et al. The Effect of Сramizol on ApoA1 Gene Expression in Rats with Experimental Hyperlipidemia. Biochemistry (Moscow), Suppl Series B: Biomed Chem. 2020;14(5):82–85. doi: 10.18097/PBMC20196505403
- Mahley RW, Innerarity TL, Rall SC, Weisgraber KH Jr. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res. 1984;25:1277–1294. doi: 10.1016/S0022-2275(20)34443-6
- Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomisedtrials. Lancet. 2012;380(9841) 581–590. doi: 10.1016/S0140-6736(12)60367-5
- Mineo C. Lipoprotein receptor signaling in atherosclerosis. Cardiovasc Res. 2020;116(7):1254–1274. doi: 10.1093/cvr/cvz338
- Moutzouri E, Kei A, Elisaf MS, Milionis HJ. Management of dyslipidemias with fibrates, alone and in combination with statins: role of delayed-release fenofibric acid. Vasc Health Risk Manag. 2010;6:525–539. doi: 10.2147/vhrm.s5593
- Nicholls SJ, Ballantyne CM, Barter PJ, et al. Effect of two intensivestatin regimens on progression of coronary disease. N Engl J Med. 2011;365(22):2078–2087. doi: 10.1056/NEJMoa1110874
- Nicholls SJ, Lincoff AM, Barter PJ, et al. Assessment of the clinical effects of cholesteryl ester transfer protein inhibition with evacetrapib in patients at high-risk for vascular outcomes: rationale and design of the ACCELERATE trial. Am Heart J. 2015;170(6):1061–1069. doi: 10.1016/j.ahj.2015.09.007
- Ouweneel AB, Zhao Y, Calpe-Berdiel L, et al. Impact of bone marrow ATP-binding cassette transporter A1 defciency on atherogenesis is independent of the presence of the low-density lipoprotein receptor. Atherosclerosis. 2021;319:79–85. doi: 10.1016/j.atherosclerosis.2021.01.001
- Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking defining the rules for lipid traders. Int J Biochem Cell Biol. 2004;36(1):39–77. doi: 10.1016/s1357-2725(03)00173-0
- DiMarco DM, Fernandez ML. The Regulation of Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis by MicroRNAs. Biology. 2015;4:494–511. doi: 10.3390/biology4030494.
- Sabatine MS, Giugliano RP, Keech A, et al. Rationale and design of the Further cardiovascular outcomes Research withPCSK9 Inhibition in subjects with Elevated Risk trial. Am Heart J. 2016;173:94–101. doi: 10.1016/j.ahj.2015.11.015
- Schwartz GG, Bessac L, Berdan LG, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168(5):682–689. doi: 10.1016/j.ahj.2014.07.028
- Seed M, O’Connor B, Perombelon N, et al. The effect of nicotinic acid and acipimox on lipoprotein(a) concentration and turnover. Atherosclerosis. 1993;101(1):61–68. doi: 10.1016/0021-9150(93)90102-z
- Shavva VS, Bogomolova A, Nikitin AA, et al. Insulin-Mediated Downregulation of Apolipoprotein A-I Gene in Human Hepatoma Cell Line HepG2: The Role of Interaction Between FOXO1 and LXRβ Transcription Factors. J Cell Biochem. 2017;118(2):382–396. doi: 10.1002/jcb.25651
- Squizzato A, Galli M, Romualdi E, et al. Statins, fibrates, and venous thromboembolism: a meta-analysis. Eur Heart J. 2010;31(10):1248–1256. doi: 10.1093/eurheartj/ehp556
- Srivastava RA, Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem. 2000;209:131–144. doi: 10.1023/a:1007111830472
- Tomas M, Lattote G, Senti M, Marrugat J. The Antioxidant Function of High Density Lipoproteins: A New Paradigm in Atherosclerosis. Rev Esp Cardiol. 2004;57(6):557–569. doi: 10.1016/S1885-5857(06)60630-0
- Traughber CA, Opoku E, Brubaker G, et al. SR-B1 uptake of HDL promotes prostate cancer proliferation and tumor progression. BioRxiv. 2020. doi: 10.1101/2020.02.24.963454
- Wen-Jun S, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: Expression, Molecular Regulation, and Cholesterol Transport Function. J Lipid Res. 2018;59(7):1114–1131. doi: 10.1194/jlr.R083121.
- Wiesbauer F, Kaun C, Zorn G, et al. HMG CoA reductase inhibitors affect the fibrinolytic system of human vascular cells in vitro: a comparative study using diferent statins. Br J Pharmacol. 2002;135(1):284–292. doi: 10.1038/sj.bjp.0704454
- Wolska A, Dunbarb RL, Freemana LA, et al. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017;267:49–60. doi: 10.1016/j.atherosclerosis.2017.10.025
- Yujiao S, Ling C, Shijie Z, et al. Effects of nanoparticle-mediated delivery of pitavastatin on atherosclerotic plaques in ApoE-knockout mice and THP-1-derived macrophages. J Exp Theurap Med. 2020;19(6):3787–3797. doi: 10.3892/etm.2020.8632
- Zysk C, Williams S, Chavarria I, et al. Genetic Variants in Host Protein Disulfide Isomerase 2 (PDIA2) are Associated with Susceptibility to Chlamydia Trachomatis Infection. J Assoc Gen Technol. 2020;46(4):244–249.
