Механизмы и активаторы адаптации к гипоксии
- Авторы: Любимов А.В.1,2, Черкашин Д.В.1,2, Ефимов С.В.2, Аланичев А.Е.2, Иванов В.С.2, Кутелев Г.Г.2
-
Учреждения:
- Институт экспериментальной медицины
- Военно-медицинская академия им. С.М. Кирова
- Выпуск: Том 19, № 3 (2021)
- Страницы: 269-280
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/RCF/article/view/82807
- DOI: https://doi.org/10.17816/RCF193269-280
- ID: 82807
Цитировать
Аннотация
В настоящее время ключевым медиатором кислородного обмена считается гипоксия-индуцируемый фактор (HIF1). Впервые он был идентифицирован в качестве транскрипционного фактора, который активизируется при снижении парциального давления кислорода (О2) в клетках и тканях. Известно, что спектр активаторов HIF1 включает в себя как внешние — гипоксия, психоэмоциональный стресс, так и внутренние факторы и варьирует от гормонов до хелаторов железа. Данный обзор посвящен некоторым природным активаторам HIF1 и его молекулярным механизмам активации, потенциал применения в клинической практике которых обусловлен низким уровнем токсичности, сниженной вероятностью возникновения нежелательных побочных эффектов, что открывает перед исследователями и клиницистами иные варианты подхода к терапии заболеваний, связанных с локальной и общей ишемией и гипоксией, новые возможности профилактического использования лекарственных средств для снижения степени повреждения органов и тканей в случае непредвиденного состояния острой повреждающей гипоксии и реперфузии после нее.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Андрей Владимирович Любимов
Институт экспериментальной медицины; Военно-медицинская академия им. С.М. Кирова
Email: lyubimov_av@mail.ru
ORCID iD: 0000-0001-9829-4681
кандидат медицинских наук
Россия, 197376, Санкт-Петербург, ул. Академика Павлова, д. 12; 194044, Санкт-Петербург, ул. Академика Лебедева, 6Дмитрий Викторович Черкашин
Институт экспериментальной медицины; Военно-медицинская академия им. С.М. Кирова
Email: cherkashin-dmitr@mail.ru
ORCID iD: 0000-0003-1363-6860
SPIN-код: 2781-9507
доктор медицинских наук
Россия, 197376, Санкт-Петербург,ул. Академика Павлова, 12; 194044, Санкт-Петербург, ул. Академика Лебедева, 6Семен Валерьевич Ефимов
Военно-медицинская академия им. С.М. Кирова
Автор, ответственный за переписку.
Email: sve03@rambler.ru
кандидат медицинских наук
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, 6Андрей Евгеньевич Аланичев
Военно-медицинская академия им. С.М. Кирова
Email: alanichevae80@mail.ru
ORCID iD: 0000-0002-4135-5815
кандидат медицинских наук
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, 6Валерий Сергеевич Иванов
Военно-медицинская академия им. С.М. Кирова
Email: ivanovmed84@mail.ru
SPIN-код: 1965-4741
cт. ординатор клиники
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, 6Геннадий Геннадьевич Кутелев
Военно-медицинская академия им. С.М. Кирова
Email: gena08@yandex.ru
ORCID iD: 0000-0002-6489-9938
SPIN-код: 5139-8511
кандидат медицинских наук
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, 6Список литературы
- Huang LE, Bunn HF. Hypoxia-inducible factor and its biomedical relevance. J Biol Chem. 2003;278(22):19575–19578. doi: 10.1074/jbc.R200030200
- Poellinger L, Johnson RS. HIF1 and hypoxic response: the plot thickens. Curr Opin Genet Dev. 2004;14(1):81–85. doi: 10.1016/j.gde.2003.12.006
- Semenza GL. Targeting HIF1 for cancer therapy. Nat Rev Cancer. 2003;3:721–732. doi: 10.1038/nrc1187
- Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510–5514. doi: 10.1073/pnas.92.12.5510
- Dames SA, Martinez-Yamout M, De Guzman RN, et al. Structural basis for HIF1α/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci USA. 2002;99(8):5271–5276. doi: 10.1073/pnas.082121399
- Freedman SJ, Sun ZY, Poy F, et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1α. Proc Natl Acad Sci USA. 2002;99(8):5367–5372. doi: 10.1073/pnas.082117899
- Hewitson KS, McNeill LA, Riordan MV, et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem. 2002;277(29):26351–26355. doi: 10.1074/jbc.C200273200
- Lando D, Peet DJ, Gorman JJ, et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–1471. doi: 10.1101/gad.991402
- Lando D, Peet DJ, Whelan DA, et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295(5556):858–861. doi: 10.1126/science.1068592
- Lin SC, Liao WL, Lee JC, Tsai SJ. Hypoxia-regulated gene network in drug resistance and cancer progression. Exp Biol Med (Maywood). 2014;239(7):779–792. doi: 10.1177/1535370214532755
- Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF1α and VHL to mediate repression of HIF1 transcriptional activity. Genes Dev. 2001;15:2675–2686. doi: 10.1101/gad.924501
- McNeill LA, Hewitson KS, Claridge TD, et al. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem J. 2002;367(3):571–575. doi: 10.1042/BJ20021162
- Singh D, Arora R, Kaur P, et al. Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer. Cell Biosci. 2017;7:62. doi: 10.1186/s13578-017-0190-2
- Jin P, Kang J, Lee MK, Park JW. Ferritin heavy chain controls the HIF-driven hypoxic response by activating the asparaginylhydroxylase FIH. Biochem Biophys Res Commun. 2018;499(3):475–481. doi: 10.1016/j.bbrc.2018.03.173
- Pugh CW. Modulation of the Hypoxic Response. Adv Exp Med Biol. 2016;903:259–271. doi: 10.1007/978-1-4899-7678-9_18
- Wang V, Davis DA, Yarchoan R. Identification of functional hypoxia inducible factor response elements in the human lysyl oxidase gene promoter. Biochem Biophys Res Commun. 2017;490(2):480–485. doi: 10.1016/j.bbrc.2017.06.066
- Brahimi-Horn C, Mazure N, Pouyssegur J. Signalling via the hypoxia-inducible factor-1α requires multiple posttranslational modifications. Cell Signal. 2005;17(1):1–9. doi: 10.1016/j.cellsig.2004.04.010
- Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood. 1993;82(12):3610–3615. doi: 10.1182/blood.V82.12.3610.3610
- Li L, Yin X, Ma N, et al. Desferrioxamin regulates HIF1 alpha expression in neonatal rat brain after hypoxia-ischemia. Am J Transl Res. 2014;6(4):377–383.
- AHFS Drug Information 2004. McEvoy, GK., editor. Bethesda: American Society of Health-System Pharmacists, Inc. American Hospital Formulary Service; 2004. P. 2870–2873.
- Gobin J, Moore CH, Reeve JR Jr, et al. Iron acquisition by Mycobacterium tuberculosis: isolation and characterization of a family of iron-binding exochelins. Proc Natl Acad Sci USA. 1995;92(11):5189–5193. doi: 10.1073/pnas.92.11.5189
- Chong TW, Horwitz LD, Moore JW, et al. A mycobacterial iron chelator, desferri-exochelin, induces hypoxia-inducible factors 1 and 2, NIP3, and vascular endothelial growth factor in cancer cell lines. Cancer Res. 2002;62:6924–6927.
- Shen T, Huang S. Repositioning the Old Fungicide Ciclopirox for New Medical Uses. Curr Pharm Des. 2016;22(28):4443–4450. doi: 10.2174/1381612822666160530151209
- Wanner RM, Spielmann P, Stroka DM, et al. Epolones induce erythropoietin expression via hypoxia-inducible factor-1α activation. Blood. 2000;96(4):1558–1565. doi: 10.1182/blood.V96.4.1558
- Linden T, Katschinski DM, Eckhardt K, et al. The antimycotic ciclopirox olamine induces HIF1α stability, VEGF expression, and angiogenesis. FASEB J. 2003;17(6):761–763. doi: 10.1096/fj.02-0586fje
- Schnitzer SE, Schmid T, Zhou J, et al. Inhibition of GSK3beta by indirubins restores HIF1alpha accumulation under prolonged periods of hypoxia / anoxia. FEBS Lett. 2005;579(2):529–533. doi: 10.1016/j.febslet.2004.12.023
- Cheng YC, Liou JP, Kuo CC, et al. MPT0B098, a novel microtubule inhibitor that destabilizes the hypoxia-inducible factor-1α mRNA through decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR. Mol Cancer Ther. 2013;12(7):1202–1212. doi: 10.1158/1535-7163.MCT-12-0778
- Jung YJ, Isaacs JS, Lee S, et al. Microtubule disruption utilizes an NFκB-dependent pathway to stabilize HIF1α protein. J Biol Chem 2003;278(9):7445–7452. doi: 10.1074/jbc.M209804200
- Shen J, Zhang JH, Xiao H, et al. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis. 2018;9(2):81. doi: 10.1038/s41419-017-0145-x
- Zhou X, Xu Z, Li A, et al. Double-sides sticking mechanism of vinblastine interacting with α, β-tubulin to get activity against cancer cells. J Biomol Struct Dyn. 2019;37(15):4080–4091. doi: 10.1080/07391102.2018.1539412
- Guo C, Wang L, Jiang B, Shi D. Bromophenol curcumin analog BCA-5 exerts an antiangiogenic effect through the HIF1α/VEGF/Akt signaling pathway in human umbilical vein endothelial cells. Anticancer Drugs. 2018;29(10):965–974. doi: 10.1097/CAD.0000000000000671
- Mabjeesh NJ, Willard MT, Harris WB, et al. Dibenzoylmethane, a natural dietary compound, induces HIF1α and increases expression of VEGF. Biochem Biophys Res Commun. 2003;303(1):279–286. doi: 10.1016/s0006-291x(03)00336-x
- Wilson WJ, Poellinger L. The dietary flavonoid quercetin modulates HIF1α activity in endothelial cells. Biochem Biophys Res Commun. 2002;293(1):446–450. doi: 10.1016/S0006-291X(02)00244-9
- Welford RW, Schlemminger I, McNeill LA, et al. The selectivity and inhibition of AlkB. J Biol Chem. 2003;278(12):10157–10161. doi: 10.1074/jbc.M211058200
- Zhou YD, Kim YP, Li XC, et al Hypoxia-inducible factor-1 activation by (–)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J Nat Prod. 2004;67:2063–2069. doi: 10.1021/np040140c
- Hong J, Lu H, Meng X, et al. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (–)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res. 2002;62:7241–7246.
- Demeule M, Michaud-Levesque J, Annabi B, et al. Green tea catechins as novel antitumor and antiangiogenic compounds. Curr Med Chem Anti-Canc Agents. 2002;2(4):441–463. doi: 10.2174/1568011023353930
- Burnley-Hall N, Willis G, Davis J, et al. Nitrite-derived nitric oxide reduces hypoxia-inducible factor 1α-mediated extracellular vesicle production by endothelial cells. Nitric Oxide. 2017;63:1–12. doi: 10.1016/j.niox.2016.12.005
- Huang LE, Willmore WG, Gu J, et al. Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J Biol Chem. 1999;274(13):9038–9044. doi: 10.1074/jbc.274.13.9038
- La Padula PH, Etchegoyen M, Czerniczyniec A, et al. Cardioprotection after acute exposure to simulated high altitude in rats. Role of nitric oxide. Nitric Oxide. 2018;73:52–59. doi: 10.1016/j.niox.2017.12.007
- Liu Y, Christou H, Morita T, et al. Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5’ enhancer. J Biol Chem. 1998;273(24):15257–15262. doi: 10.1074/jbc.273.24.15257
- Sogawa K, Numayama-Tsuruta K, Ema M, et al. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci USA. 1998;95(13):7368–7373. doi: 10.1073/pnas.95.13.7368
- Vetrovoy O, Sarieva K, Galkina O, et al. Neuroprotective Mechanism of Hypoxic Post-conditioning Involves HIF1-Associated Regulation of the Pentose Phosphate Pathway in Rat Brain. Neurochem Res. 2019;44:1425–1436. doi: 10.1007/s11064-018-2681-x
- Kimura H, Weisz A, Kurashima Y, et al. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood. 2000;95(1):189–197. doi: 10.1182/blood.V95.1.189
- Arandarcikaite O, Jokubka R, Borutaite V. Neuroprotective effects of nitric oxide donor NOC-18 against brain ischemia-induced mitochondrial damages: role of PKG and PKC. Neurosci Lett. 2015;586:65–70. doi: 10.1016/j.neulet.2014.09.012
- Palmer LA, Gaston B, Johns RA. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol. 2000;58(6):1197–1203. doi: 10.1124/mol.58.6.1197
- Yang C, Hwang HH, Jeong S, et al. Inducing angiogenesis with the controlled release of nitric oxide from biodegradable and biocompatible copolymeric nanoparticles. Int J Nanomedicine. 2018;13:6517–6530. doi: 10.2147/IJN.S174989
- Sumbayev VV, Budde A, Zhou J, Brune B. HIF1α protein as a target for S-nitrosation. FEBS Lett. 2003;535(1–3):106–112. doi: 10.1016/s0014-5793(02)03887-5
- Yasinska IM, Sumbayev VV. S-nitrosation of Cys-800 of HIF1α protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett. 2003;549(1–3):105–109. doi: 10.1016/s0014-5793(03)00807-x
- Frise MC, Cheng HY, Nickol AH, et al. Clinical iron deficiency disturbs normal human responses to hypoxia. J Clin Invest. 2016;126(6):2139–2150. doi: 10.1172/JCI85715
- Shah YM, Xie L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology. 2014;146(3):630–642. doi: 10.1053/j.gastro.2013.12.031
- Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5:343–354. doi: 10.1038/nrm1366
- Thomas DD, Espey MG, Ridnour LA, et al. Hypoxic inducible factor 1α, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci USA. 2004;101(24):8894–8899. doi: 10.1073/pnas.0400453101
- Mukundan H, Kanagy NL, Resta TC. 17-β estradiol attenuates hypoxic induction of HIF1α and erythropoietin in Hep3B cells. J Cardiovasc Pharmacol. 2004;44(1):93–100. doi: 10.1097/00005344-200407000-00013
- Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277(26):23111–23115. doi: 10.1074/jbc.M202487200
- Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 1993;90(9):4304–4308. doi: 10.1073/pnas.90.9.4304
- Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–1237. doi: 10.1074/jbc.270.3.1230
- Muñoz-Sánchez J, Chánez-Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2018;39(4):556–570. doi: 10.1002/jat.3749
- Luczak MW, Zhitkovich A. Nickel-induced HIF1α promotes growth arrest and senescence in normal human cells but lacks toxic effects in transformed cells. Toxicol Appl Pharmacol. 2017;331:94–100. doi: 10.1016/j.taap.2017.05.029
- Salnikow K, An WG, Melillo G, et al. Nickel-induced transformation shifts the balance between HIF1 and p53 transcription factors. Carcinogenesis. 1999;20(9):1819–1823. doi: 10.1093/carcin/20.9.1819
- Salnikow K, Blagosklonny MV, Ryan H, et al. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res. 2000;60:38–41.
- Kim D, Dai J, Park YH, et al. Activation of Epidermal Growth Factor Receptor/p38/Hypoxia-inducible Factor-1α Is Pivotal for Angiogenesis and Tumorigenesis of Malignantly Transformed Cells Induced by Hexavalent Chromium. J Biol Chem. 2016;291(31):16271–16281. doi: 10.1074/jbc.M116.715797
- Gao N, Jiang BH, Leonard SS, et al. p38 Signaling-mediated hypoxia-inducible factor 1α and vascular endothelial growth factor induction by Cr(VI) in DU145 human prostate carcinoma cells. J Biol Chem. 2002;277(47):45041–45048. doi: 10.1074/jbc.M202775200
- Agani F, Semenza GL. Mersalyl is a novel inducer of vascular endothelial growth factor gene expression and hypoxia-inducible factor 1 activity. Mol Pharmacol. 1998;54(5):749–754. doi: 10.1124/mol.54.5.749
- Salnikow K, Donald SP, Bruick RK, et al. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J Biol Chem. 2004;279(39):40337–40344. doi: 10.1074/jbc.M403057200
- Wu Z, Zhang W, Kang YJ. Copper affects the binding of HIF1α to the critical motifs of its target genes. Metallomics. 2019;11(2):429–438. doi: 10.1039/c8mt00280k
- Zelzer E, Levy Y, Kahana C, et al. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF1α/ARNT. EMBO J. 1998;17(17):5085–5094. doi: 10.1093/emboj/17.17.5085
- Feldser D, Agani F, Iyer NV, et al. Reciprocal positive regulation of hypoxia-inducible factor 1α and insulin-like growth factor 2. Cancer Res. 1999;59:3915–3918.
- Cherkashin DV, Lyubimov AV. The molecular marker of the preconditioning phenomenon HIF1α is a new pathway for early detection of visceral hypoxic conditions. Therapeutic archive. 2020;92(4):121–126. (In Russ.) doi: 10.26442/00403660.2020.04.000473
- Lyubimov AV, Ivanov AO, Bezkishkii EN, et al. Assessment of the effect of long-term continuous stay in the artificial hypoxic gas-air environment at normal atmospheric pressure on the functional state of the cardiovascular system. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(3):47–53. (In Russ.) doi: 10.17816/RCF16347-53
- Mabjeesh NJ, Post DE, Willard MT, et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62:2478–2482.
