By-products of disinfection of potable water at placing of armies in field conditions

Cover Page

Cite item

Full Text

Abstract

On the basis of studying of the data published in open sources, the problem of the comparative characteristic of potential danger of various methods of disinfection of water about formation in process or as a result of its clearing of the substances possessing toxic and (or) cancerogenic action dared. Application of practically all methods, both traditional, and perspective is established, that is accompanied by formation of by-products of disinfection directly in potable water or as a part of drains in the form garbage removed from the water.

Now the most widespread, effective and economic way of disinfection water is the use of chlorine-containing preparations. Such approach provides destruction of the majority of pathogenic microorganisms that defines the application of chlorine-containing preparations in world practice of clearing and water disinfecting in spite of the fact that at their use there is a formation of the big number of products of collateral disinfection.

As concentration of the last depends on parameters of the process of disinfection, to solve a safety problem it is offered by strict observance of conditions of technological process, instead of prohibition of application of those or other techniques.

The most perspective for water preparation perfection in the field conditions, having the least quantity of by-products of disinfection, is the approach to disinfecting of water which includes two alternative systems: reverse osmosis and an ultrafiltration (and in the long term — nanofiltration) with possibility of a choice of one of these variants of clearing.

As concentration of the last depends on parameters of the process of clearing, to solve a safety problem it is offered by strict observance of conditions of technological process, instead of prohibition of application of those or other techniques.

The basis for refusal of connection of field camp to the centralised networks of water supply and use of the chlorinated potable water is not revealed.

About the authors

Zhanna V. Plakhotskaya

Russian Military Medical Academy

Author for correspondence.
Email: Zannapl@yandex.ru
ORCID iD: 0000-0002-9045-721X
SPIN-code: 8919-5585
Scopus Author ID: 872745

researcher of the research laboratory (military and rational nutrition) of the research department (nutrition and water supply) of the research center

Russian Federation, Saint Petersburg

Vladimir P. Andreev

Russian Military Medical Academy

Email: vpandreev@mail.ru
ORCID iD: 0000-0002-9072-2845
SPIN-code: 3098-4549
Scopus Author ID: 496119

Associate Professor, Senior Researcher of the Research Laboratory (Military and Rational Nutrition) of the Research Department (Nutrition and Water Supply) of the Research Center

Russian Federation, Saint Petersburg

Andrey V. Krivtsov

Russian Military Medical Academy

Email: Crixus78@yandex.ru
ORCID iD: 0000-0001-5919-2850
SPIN-code: 4841-4270
Scopus Author ID: 202244

Major of the Medical Service, Head of the Research Laboratory (Medical and Biological Problems of Water Supply to Troops) of the Research Department (Food and Water Supply) of the Research Center

Russian Federation, Saint Petersburg

References

  1. Drozdova EV, Buraya VV, Girina VV, et al. On the issue of the formation of by-products of drinking water disinfection (regulated and emergent), their genotoxic and carcinogenic properties: a review of the problem and directions for further research. In: Zdorov’e I okruzhayushchaya sreda. Collection of scientific papers. Issue. 26. Minsk: RNMB Publ.; 2016. P. 12–16. (In Russ.)
  2. Kirilenko VI, Rudnev IM. Modern means of field water supply of troops. Scientific problems of material support of armed forces of the Russian Federation. 2018;(4(10)):98–107. (In Russ.)
  3. Hrudey SE, Charrois JWA. Disinfection By-products and Human Health: Relevance to Human Health. Vol. 11. IWA Publishing; 2012. P. 213–281. doi: 10.2166/9781780400624
  4. Drinking water requirements for states and public water systems: Stage 1 and Stage 2 Disinfectants and Disinfection Byproducts Rules. Suppl. 2. EPA 816-F-10-080. Washington, DC, USA: Office of Water; 2017.
  5. Six-year review 3 technical support document for disinfectants/disinfection by products rules. EPA 810-R-16-012. Washington, DC, USA; Office of Water. 2016.
  6. McGuire MJ. The chlorine revolution: water disinfection and the fight to save lives. Zeilig Nancy, editor. 1st ed. Denver, Colorado, USA: AWWA; 2013.
  7. Hrudey SE, Backer LC, Humpage AR, et al. Evaluating evidence for association of human bladder cancer with drinking-water chlorination disinfection by-products. J Toxicol Environ Health B Crit Rev. 2015;18(5):213–241. doi: 10.1080/10937404.2015.1067661
  8. Beretta S, Vivaldo T, Morelli M, Zuccotti GV. Swimming pooll-induced asthma. J Investing Allergo Clin Immunol. 2011;21(3):240–241.
  9. Moreira A, Palmares C, Lopes C, Delgado L. Airway vascular damage in elite swimmers. Respir Med. 2011;105(11):1761–1765. doi: 10.1016/j.rmed.2011.05.011
  10. Voisin C, Sardella A, Marcucci F, Bernard A. Infant swimming in chlorinated pools and the risk of bronchiolitis, asthma and allergy. Eur Respir J. 2010;36(1):41–47. doi: 10.1183/09031936.00118009
  11. Rutala WA, Weber DJ, Weinstein RA, et al. Guideline for disinfection and sterilization in healthcare facilities, 2008. CDC. 2019. P. 163. Available at: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/ (accessed 08.06.22).
  12. Lehtola MJ, Miettinen IT, Keinänen MM, et al. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 2004;38(17): 3769–3779. doi: 10.1016/j.watres.2004.06.024
  13. Butterworth T, Faugier J, editors. Clinical Supervision and Mentorship in Nursing. Springer Science+Business Media; 2013. 246 p.
  14. Oshiro RK. Method 1600: Enterococci in water by membrane filtration using membrane-enterococcus indoxyl-β-D-Glucoside agar. EPA-821-R-09-016. Washington, DC, USA: Office of Water; 2009. 42 p.
  15. Disinfectants and disinfection byproducts rule (Stage 1 DBPR). EPA 816 F-02-021. Washington, DC, USA: Office of Water; 2001.
  16. Chuang YH, Tung HH. Formation of trichloronitromethane and dichloroacetonitrile in natural waters: precursor characterization, kinetics and interpretation. J Hazard Mater. 2015;283:218–226. (Engl) doi: 10.1016/j.jhazmat.2014.09.285
  17. Deng L, Huang CH, Wang YL. Effects of combined UV and chlorine treatment on the formation of trichloronitromethane from amine precursor. Environ Sci Technol. 2014;48(5):2697–2705. doi: 10.1021/es404116n
  18. Dotson AD, Keen VO, Metz D, Linden KG. UV/H(2)O(2) treatment of drinking water increases post-chlorination DBP formation. Water Research. 2010;44(12):3703–3713. doi: 10.1016/j.watres.2010.04.006
  19. Krasner SW, Weinberg HS, Richardson SD, et al. Occurrence of a new generation of disinfection byproducts. Environ Sci Technol. 2006;40(23):7175–7185. doi: 10.1021/es060353j
  20. Li J, Blatchley ER. UV photodegradation of inorganic chloramines. Environ Sci Technol. 2009;43(1):60–65. doi: 10.1021/es8016304
  21. Plewa MJ, Wagner ED, Jazwierska P, et al. Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environ Sci Technol. 2004;38(1):3862–3868. doi: 10.1021/es0304771
  22. Echigo S, Minear RA. Kinetics of the reaction of hypobromous acid and organic matters in water treatment processes. Environ Sci Technol. 2006;53(11):235–243. doi: 10.2166/wst.2006.358
  23. Hua G, Reckhow D. Determination of TOCl, TOBr, and TOI in drinking water by pyrolysis and off-line ion chromatography. Analytical and Bioanalytical Chemistry. 2006;384(2):495–504. doi: 10.1007/s00216-005-0214-3
  24. Du JR, Peldszus S, Huck PM, Feng XS. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Res. 2009;43(18):4559–4568. doi: 10.1016/j.watres.2009.08.008
  25. Hammes F, Salhi E, Koster O, et al. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water. Res. 2006;40(12):2275–2286. doi: 10.31031/cjmi.2019.02.000543
  26. Lehman LL. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent. Water. Res. 2009;43(7):2020–2028. doi: 10.1016/j.watres.2009.02.003
  27. Montgomery Watson Consulting Engineering. Mathematical modeling of the formation of THMs and HAA in Chlorinated Natural Waters, Denver, Colorado, USA. Final report reported for AWWA. 1993.
  28. APHA, AWWA WEF. Standard methods for the examination of water and wastewater. 24th ed. Washington, USA. 2012.
  29. Clarke S, Bettin W. Ultraviolet light disinfection in the use of ındividual water purification devices. Environmental science. 2006. doi: 10.21236/ada453967
  30. Vilhunen S, Sarkka H, Sillanpaa M. Ultraviolet light-emitting diodes in water disinfection. Environ Sci Pollut Res Int. 2009;16(4): 439–442. doi: 10.1007/s11356-009-0103-y
  31. Tarhan G. Which disinfection method is effective for water disinfection. Cohesive J Microbiol Infect Dis. 2019;2(4):1–6. doi: 10.31031/CJMI.2019.02.000544
  32. Yavorskiy NA, Kornev YA, Preys SV, et al. The pulse barrier category as a method of processing of water: Active particles-oxidizers in a water-air stream. Izvestiya Tomskogo politekhnicheskogo universiteta. 2006;309(2):108–113. (In Russ.)
  33. Butko MP, Tiganov VS, Frolov VS. Alternative to traditional disinfectants. Problemy veterinarnoy sanitarii, gigieny I ekologii. 2012;1(7):34–37. (In Russ.)
  34. Zhao D, Qiu L, Song J, et al. Efficiencies and mechanisms of chemical cleaning agents for nanofiltration membranes used in produced wastewater desalination. Sci Total Environ. 2019;652:256–266. doi: 10.1016/j.scitotenv.2018.10.221
  35. Matus LI, Nefed’eva EE. Konspekt lektsiy po distsipline “Metody ochistki stochnykh vod”. Volgograd: Volgogradskiy GTU Publ.; 2019. (In Russ.)
  36. Chigaev IG, Komarova LF. A study of nano-filtration and ion exchange as complex methods for natural underground water treatment. Bulletin of the Technological University. 2019;22(4):99–102. (In Russ.)
  37. Pervov AG. Modern highly efficient technologies for purification of drinking and industrial water using membranes: reverse osmosis, nanofiltration, ultrafiltration. Moscow: MGSU Publ.; 2009. (In Russ.)
  38. Arbatskov AN. Water purification using reverse osmosis. Sbornik materialov zaochn. nauchn.-prakt. konferentsii. 2020. P. 253–261. (In Russ.)
  39. Shevchenko DV, Perepechenova YuA. Effect of aluminum nanoparticles on the respiratory system of outbred laboratory rats after a single intracheal injection. In: Aktual’nye problemy biomeditsiny. Collection of abstracts of the XXVII All-Russian Conference of Young Scientists with International Participation. Saint Petersburg, 25–26 March 2021. Saint Petersburg: RITs PSPbGMU Publ.; 2021. P. 254–255. (In Russ.)
  40. Oberdörster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology. 2007;1(1):2–25. doi: 10.1080/17435390701314761
  41. Bonner JC. Carbon nanotubes as delivery systems for respiratory disease: do the dangers outweigh the potential benefits? Expert Rev Respir Med. 2011;5(6):779–787. doi: 10.1586/ers.11.72

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».