POSSIBLE STRATEGIES FOR USING MESENCHYMAL STEM CELLS TO TREAT FROSTBITE


Cite item

Full Text

Abstract

The purpose of this review is to systematize scientific data and to assess the prospects for using mesenchymal stem cells (MSCs) to treat injury in the Arctic. Here, we considered possible sources of MSCs, barriers and limitations of their use and possible strategies to improve their therapeutic outcome (bibliography: 33 refs).

About the authors

M. O. Durymanov

Moscow Institute of Physics and Technology (State University)

Dolgoprudny, Moscow Region

S. A. Biryukov

Moscow Institute of Physics and Technology (State University)

Dolgoprudny, Moscow Region

G. I. Fi’lkov

Moscow Institute of Physics and Technology (State University)

Dolgoprudny, Moscow Region

A. V. Lisin

Moscow Institute of Physics and Technology (State University)

Dolgoprudny, Moscow Region

E. V. Gorina

Moscow Institute of Physics and Technology (State University)

Dolgoprudny, Moscow Region

V. V. Boyarintsev

Moscow Institute of Physics and Technology (State University)

Dolgoprudny, Moscow Region

A. V. Trofimenko

Moscow Institute of Physics and Technology (State University)

Dolgoprudny, Moscow Region

References

  1. Girn H. R., Ahilathirunayagam S., Mavor A. I., HomerVanniasinkam S. Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc. Endovascular. Surg. 2007; 41 (4): 277-93.
  2. Souidi N., Stolk M., Seifert M. Ischemia-reperfusion injury: beneficial effects of mesenchymal stromal cells. Curr. Opin. Organ Transplant. 2013; 18 (1): 34-43.
  3. Chen L., Tredget E. E., Liu C., Wu Y. Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PLoS One. 2009; 4 (9): e7119.
  4. Kumar P. L., Kandoi S., Misra R., S V., K R., Verma R. S. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019; 46: 1-9.
  5. Figueroa F. E., Carrión F., Villanueva S., Khoury M. Mesenchymal stem cell treatment for autoimmune diseases: a critical review. Biol. Res. 2012; 45 (3): 269-77.
  6. Wu Y., Zhao R. C. H., Tredget E. E. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem cells. 2010; 28 (5): 905-15.
  7. Khosrotehrani K. Mesenchymal stem cell therapy in skin: why and what for? Exp. Dermatol. 2013; 22 (5): 307-10.
  8. Sasaki M., Abe R., Fujita Y., Ando S., Inokuma D., Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008; 180 (4): 2581-7.
  9. Spees J. L., Olson S. D., Ylostalo J., Lynch P. J., Smith J., Perry A., Peister A., Wang M. Y., Prockop D. J. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl. Acad. Sci. U S A. 2003; 100 (5): 2397-402.
  10. Wong V. W., Crawford J. D. Vasculogenic cytokines in wound healing. BioMed Res. Int. 2013; 2013: 190486. doi: 10.1155/2013/190486
  11. Chen L., Xu Y., Zhao J., Zhang Z., Yang R. Xie J., Liu X., Qi S. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PloS One. 2014; 9 (4): e96161.
  12. Chen L., Tredget E. E., Liu C., Wu Y. Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PloS One. 2009; 4 (9): e7119.
  13. Stoff A., Rivera A. A., Sanjib Banerjee N., Moore S. T., Michael Numnum T., Espinosa-de-Los-Monteros A., Richter D. F., Siegal G. P., Chow L. T., Feldman D., Vasconez L. O., Michael Mathis J., Stoff-Khalili M. A., Curiel D. T. Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp. Dermatol. 2009; 18 (4): 362-9.
  14. Kim J. W., Lee J. H., Lyoo Y. S., Jung D. I., Park H. M. The effects of topical mesenchymal stem cell transplantation in canine experimental cutaneous wounds. Vet. Dermatol. 2013; 24 (2): 242-53.
  15. Kuo Y. R., Wang C. T., Cheng J. T., Wang F. S., Chiang Y. C., Wang C. J. Bone marrow-derived mesenchymal stem cells enhanced diabetic wound healing through recruitment of tissue regeneration in a rat model of streptozotocin-induced diabetes. Plast. Reconstr. Surg. 2011; 128 (4): 872-80.
  16. Agay D., Scherthan H., Forcheron F., Grenier N., Hérodin F., Meineke V., Drouet M. Multipotent mesenchymal stem cell grafting to treat cutaneous radiation syndrome: development of a new minipig model. Exp. Hematol. 2010.; 38 (10): 945-56.
  17. Nambu M., Kishimoto S., Nakamura S., Mizuno H., Yanagibayashi S., Yamamoto N., Azuma R., Nakamura S., Kiyosawa T., Ishihara M., Kanatani Y. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann. Plast. Surg. 2009; 62 (3): 317-21.
  18. Lee S. H., Lee J. H., Cho K. H. Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann. Dermatol. 2011; 23 (2): 150-5.
  19. Blanton M. W., Hadad I., Johnstone B. H., Mund J. A., Rogers P. I., Eppley B. L., March K. L. Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plast. Reconstr. Surg. 2009; 123 (2): 56-64.
  20. Lim J. S., Yoo G. Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model. J. Korean Med. Sci. 2010; 25 (5): 746-51.
  21. Kølle S. F., Fischer-Nielsen A., Mathiasen A. B., Elberg J. J., Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013; 382 (9898): 1113-20.
  22. Jun E. K., Zhang Q., Yoon B. S., Moon J. H., Lee G., Park G., Kang P. J., Lee J. H., Kim A., You S. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int. J. Mol. Sci. 2014; 15 (1): 605-28.
  23. Huang L., Wong Y. P., Gu H., Cai Y. J., Ho Y., Wang C. C., Leung T. Y., Burd A. Stem cell-like properties of human umbilical cord lining epithelial cells and the potential for epidermal reconstitution. Cytotherapy. 2011; 13 (2): 145-55.
  24. Can A., Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem cells. 2007; 25 (11): 2886-95.
  25. Butler K. L., Goverman J., Ma H., Fischman A., Yu Y. M., Bilodeau M., Rad A. M., Bonab A. A., Tompkins R. G., Fagan S. P. Stem cells and burns: review and therapeutic implications. J. Burn. Care Res. 2010; 31 (6): 874-81.
  26. Tschumperlin D. J., Liu F., Tager A. M. Biomechanical regulation of mesenchymal cell function. Current opinion in rheumatology. 2013; 25 (1): 92.
  27. Mohanty S. T., Cairney C. J., Chantry A. D., Madan S., Fernandes J. A., Howe S. J. A small molecule modulator of prion protein increases human mesenchymal stem cell lifespan, ex vivo expansion, and engraftment to bone marrow in NOD/SCID mice. Stem Cells. 2012; 30 (6): 1134-43.
  28. Stubbs S. L., Hsiao S. T., Peshavariya H. M., Lim S. Y., Dusting G. J., Dilley R. J. Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev. 2011; 21 (11): 1887-96.
  29. Lu C. H., Chang Y. H., Lin S. Y., Li K. C., Hu Y. C. Recent progresses in gene delivery-based bone tissue engineering. Biotechnology Advances. 2013; 31 (8): 1695-706.
  30. Regmi S., Pathak S., Kim J. O., Yong C. S., Jeong J. H. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. Eur. J. Cell Biol. 2019; 98 (5-8): 151041. DOI: 10.1016/j. ejcb.2019.04.002
  31. Park J. S., Suryaprakash S., Lao Y. H., Leong K. W. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. 2015; 84: 3-16.
  32. Yanagihara K., Uchida S., Ohba S., Kataoka K., Itaka K. Treatment of bone defects by transplantation of genetically modified mesenchymal stem cell spheroids. Mol. Ther. Methods Clin. Dev. 2018; 9: 358-66.
  33. Yan J., Zhang C., Zhao Y., Cao C., Wu K., Zhao L., Zhang Y. Nonviral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials. 2014; 35 (27): 7734-49.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Durymanov M.O., Biryukov S.A., Fi’lkov G.I., Lisin A.V., Gorina E.V., Boyarintsev V.V., Trofimenko A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».