The disorder of the iron metabolism as a possible mechanism for the development of neurodegeneration after new coronavirus infection of SARS-CoV-2
- Authors: Litvinenko I.V.1, Krasakov I.V.2
-
Affiliations:
- S.M. Kirov Military Medical Academy
- Nikiforov Russian Center of Emergency and Radiation Medicine
- Issue: Vol 40, No 4 (2021)
- Pages: 13-24
- Section: Reviews
- URL: https://journal-vniispk.ru/RMMArep/article/view/83609
- DOI: https://doi.org/10.17816/rmmar83609
- ID: 83609
Cite item
Full Text
Abstract
The involvement of the nervous system in the pathological process that occurs when COVID-19 is infected is becoming more and more obvious. The question of the possibility of the debut or progression of the already developed Parkinsonism syndrome in patients who have undergone COVID-19 is regularly raised. A large number of hypotheses are put forward to explain this relationship. It is assumed that a violation of iron metabolism in the brain may underlie the development and progression of neurodegenerative diseases, including after the new coronavirus infection SARS-CoV-2. The analysis of stu dies on the possible influence of iron metabolism disorders on the occurrence and mechanism of development of neurodegenerative diseases after infection with SARS-CoV-2 has been carried out. The processes of physiological maintenance of iron homeostasis, as well as the influence of physiological aging on the accumulation of iron in the central nervous system are described. The relationship between hyperferritinemia occurring in COVID-19 and ferroptosis as the basis of the neurodegenerative process in Parkinson’s disease and Alzheimer’s disease is discussed. The main molecular mechanisms involved in ferroptosis are described. Examples of involvement of metal homeostasis disorders in the process of altering the structure of α-synuclein, synthesis of β-amyloid, hyperphosphorylated tau- protein are given. The causes of excessive iron accumulation in certain brain structures are discussed. The question of the possibility of using the assessment of changes in iron metabolism as a new biomarker of the progression of Parkinson’s disease is analyzed. (1 figure, bibliography: 62 refs)
Full Text
##article.viewOnOriginalSite##About the authors
Igor V. Litvinenko
S.M. Kirov Military Medical Academy
Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0001-8988-3011
SPIN-code: 6112-2792
Scopus Author ID: 57202361039
ResearcherId: F-9120-2013
D.Sc. (Medicine), Professor
Russian Federation, Saint PetersburgIgor V. Krasakov
Nikiforov Russian Center of Emergency and Radiation Medicine
Author for correspondence.
Email: ikrasakov@gmail.com
ORCID iD: 0000-0001-6092-0659
SPIN-code: 9891-8300
Scopus Author ID: 26642102200
ResearcherId: I-8865-2016
Ph.D. (Medicine)
Russian Federation, Saint PetersburgReferences
- Merello M, Bhatia KP, Obeso JA. SARS-CoV-2 and the risk of Parkinson’s disease: facts and fantasy. Lancet Neurol. 2021;20(2): 94–95. doi: 10.1016/S1474-4422(20)30442-7
- Zaitsev AA, Chernov SA, Stets VV. et al. Algorithms for the management of patients with a new coronavirus COVID-19 infection in a hospital. Guidelines. Consilium Medicum. 2020;22(11):91–97. doi: 10.26442/20751753.2020.11.200520
- Orlov YuP, Dolgikh VT, Vereschagin EI, et al. Is there a connection between iron exchange and COVID-19? Bulletin of Anesthesiology and Reanimatology. 2020;17(4):6–13. (In Russ.) doi: 10.21292/2078-5658-2020-17-4-6-13
- Polushin YuS, Shlyk IV, Gavrilova EG, et al. The role of ferritin in assessing COVID-19 severity. Bulletin of Anesthesiology and Reanimatology. 2021;18(4):20–28. (In Russ.) doi: 10.21292/2078-5658-2021-18-4-20-28
- Vargas-Vargas M, Cortés-Rojo C. Ferritin levels and COVID-19. Rev Panam Salud Publica. 2020;44:72. doi: 10.26633/RPSP.2020.72
- Tsvetaeva NV, Levina AA, Mamukova UI. The basis of regulation of iron metabolism. Clinical oncohematology. 2010;3:278–283. (In Russ.)
- Gordienko AV, Sakhin VT, Kryukov EV, et al. The importance of iron metabolism, hepcidine and soluble transferrin receptor in pathogenesis of anemia in patients with solid tumors. Bulletin of the Russian Military Medical Academy. 2018;3(63):91–94. (In Russ.) doi: 10.17816/brmma12258
- Ward RJ, Zucca FA, Duyn JH, et al. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10): 1045–1060. doi: 10.1016/S1474-4422(14)70117-6
- Lee P, Peng H, Gelbart T, Beutler E. The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci USA. 2004;101(25):9263–9265. doi: 10.1073/pnas.0403108101
- Urrutia P, Aguirre P, Esparza A, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126(4): 541–549. doi: 10.1111/jnc.12244
- Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol Aging. 2009;30(3):337–352. doi: 10.1016/j.neurobiolaging.2007.07.015
- Killilea DW, Wong SL, Cahaya HS, et al. Iron accumulation during cellular senescence. Ann N Y Acad Sci. 2004;1019:365–367. doi: 10.1196/annals.1297.063
- Xu J, Jia Z, Knutson MD, Leeuwenburgh C. Impaired iron status in aging research. Int J Mol Sci. 2012;13(2):2368–2386. doi: 10.3390/ijms13022368
- Ramos P, Santos A, Pinto NR, et al. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol. 2014;28(1):13–17. doi: 10.1016/j.jtemb.2013.08.001
- House E, Esiri M, Forster G, et al. Aluminium, iron and copper in human brain tissues donated to the Medical Research Council’s Cognitive Function and Ageing Study. Metallomics. 2012;4(1):56–65. doi: 10.1039/c1mt00139f
- Bilgic B, Pfefferbaum A, Rohlfing T, et al. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage. 2012;59(3):2625–2635. doi: 10.1016/j.neuroimage.2011.08.077
- Zecca L, Bellei C, Costi P, et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci U S A. 2008;105(45):17567–17572. doi: 10.1073/pnas.0808768105
- Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. doi: 10.1038/nrn2038
- Connor JR, Menzies SL, St Martin SM, Mufson EJ. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res. 1990;27(4):595–611. doi: 10.1002/jnr.490270421
- Crichton R, Ward R, eds. Metal-Based Neurodegeneration: From Molecular Mechanisms to Therapeutic Strategies. 2nd ed. Chichester, West Sussex, U.K.: John Wiley & Sons Limited; 2014.
- Melis JP, van Steeg H, Luijten M. Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal. 2013;18(18):2409–2419. doi: 10.1089/ars.2012.5036
- Kwok JB. Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics. 2010;2(5):671–682. doi: 10.2217/epi.10.43
- Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal. 2012;17(11):1590–1609. doi: 10.1089/ars.2011.4406
- Horowitz MP, Greenamyre JT. Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis. 2010;20(2):551–568. doi: 10.3233/JAD-2010-100354
- Paris I, Martinez-Alvarado P, Cárdenas S, et al. Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chem Res Toxicol. 2005;18(3):415–419. doi: 10.1021/tx0497144
- Di Monte DA, Schipper HM, Hetts S, Langston JW. Iron-mediated bioactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in glial cultures. Glia. 1995;15(2):203–206. doi: 10.1002/glia.440150213
- Yamamoto A, Shin RW, Hasegawa K, et al. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem. 2002;82(5): 1137–1147. doi: 10.1046/j.1471-4159.2002.t01-1-01061.x
- Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12(5):913–922. doi: 10.1007/s10495-007-0756-2
- Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5): 1060–1072. doi: 10.1016/j.cell.2012.03.042
- Wu JR, Tuo QZ, Lei P. Ferroptosis, a Recent Defined Form of Critical Cell Death in Neurological Disorders. J Mol Neurosci. 2018;66(2):197–206. doi: 10.1007/s12031-018-1155-6
- Hirsch EC, Brandel JP, Galle P, et al. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s di sease: an X-ray microanalysis. J Neurochem. 1991;56(2):446–451. doi: 10.1111/j.1471-4159.1991.tb08170.x
- Gröger A, Berg D. Does structural neuroimaging reveal a disturbance of iron metabolism in Parkinson’s disease? Implications from MRI and TCS studies. J Neural Transm (Vienna). 2012;119(12): 1523–1528. doi: 10.1007/s00702-012-0873-0
- Kortekaas R, Leenders KL, van Oostrom JC, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57(2):176–179. doi: 10.1002/ana.20369
- Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol. 2006;65(3):199–203. doi: 10.1097/01.jnen.0000202887.22082.63
- Litvinenko IV, Krasakov IV, Bisaga GN, et al. Modern conception of the pathogenesis of neurodegenerative diseases and therapeutic strategy. Neuroscience and Behavioral Physiology. 2017;117(6–2): 3–10. (In Russ.) doi: 10.17116/jnevro2017117623-10
- Faucheux BA, Nillesse N, Damier P, et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci U S A. 1995;92(21):9603–9607. doi: 10.1073/pnas.92.21.9603
- Salazar J, Mena N, Hunot S, et al Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A. 2008;105(47):18578–18583. doi: 10.1073/pnas.0804373105
- Mastroberardino PG, Hoffman EK, Horowitz MP, et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis. 2009;34(3):417–431. doi: 10.1016/j.nbd.2009.02.009
- Guerreiro RJ, Bras JM, Santana I, et al. Association of HFE common mutations with Parkinson’s disease, Alzheimer’s disease and mild cognitive impairment in a Portuguese cohort. BMC Neurol. 2006;6:24. doi: 10.1186/1471-2377-6-24
- Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem. 2001;276(47):44284–44296. doi: 10.1074/jbc.M105343200
- Connor JR, Snyder BS, Arosio P, et al. A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J Neurochem. 1995;65(2):717–724. doi: 10.1046/j.1471-4159.1995.65020717.x
- Castellani RJ, Siedlak SL, Perry G, Smith MA. Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol. 2000;100(2):111–114. doi: 10.1007/s004010050001
- Faucheux BA, Martin ME, Beaumont C, et al. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease. J Neurochem. 2002;83(2):320–330. doi: 10.1046/j.1471-4159.2002.01118.x
- Faucheux BA, Martin ME, Beaumont C, et al. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem. 2003;86(5): 1142–1148. doi: 10.1046/j.1471-4159.2003.01923.x
- Langston JW, Forno LS, Tetrud J, et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol. 1999;46(4):598–605. doi: 10.1002/1531-8249(199910)46:4<598:: aid-ana7>3.0.co;2-f
- Zhang W, Phillips K, Wielgus AR, et al. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 2011;19(1):63–72. doi: 10.1007/s12640-009-9140-z
- Lewis MM, Du G, Kidacki M, et al. Higher iron in the red nucleus marks Parkinson’s dyskinesia. Neurobiol Aging. 2013;34(5): 1497–1503. doi: 10.1016/j.neurobiolaging.2012.10.025
- Yu X, Du T, Song N, et al. Decreased iron levels in the temporal cortex in postmortem human brains with Parkinson disease. Neurology. 2013;80(5):492–495. doi: 10.1212/WNL.0b013e31827f0ebb
- Olivieri S, Conti A, Iannaccone S, et al. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci. 2011;31(50):18568–18577. doi: 10.1523/JNEUROSCI.3768-11.2011
- Boll MC, Sotelo J, Otero E, et al. Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson’s disease. Neurosci Lett. 1999;265(3):155–158. doi: 10.1016/s0304-3940(99)00221-9
- Hochstrasser H, Bauer P, Walter U, et al. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology. 2004;63(10):1912–1917. doi: 10.1212/01.wnl.0000144276.29988.c3
- Song N, Wang J, Jiang H, Xie J. Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med. 2010;48(2):332–341. doi: 10.1016/j.freeradbiomed.2009.11.004
- Miyake Y, Tanaka K, Fukushima W, et al. Dietary intake of metals and risk of Parkinson’s disease: a case-control study in Japan. J Neurol Sci. 2011;306(1–2):98–102. doi: 10.1016/j.jns.2011.03.035
- Levenson CW, Cutler RG, Ladenheim B, et al. Role of dietary iron restriction in a mouse model of Parkinson’s disease. Exp Neurol. 2004;190(2):506–514. doi: 10.1016/j.expneurol.2004.08.014
- Maass F, Michalke B, Willkommen D, et al. Cerebrospinal Fluid Iron-Ferritin Ratio as a Potential Progression Marker for Parkinson’s Disease. Mov Disord. 2021. Online ahead of print. doi: 10.1002/mds.28790
- Roberts BR, Ryan TM, Bush AI, et al. The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J Neurochem. 2012;120(Suppl 1):149–166. doi: 10.1111/j.1471-4159.2011.07500.x
- Sayre LM, Perry G, Harris PL, et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem. 2000;74(1):270–279. doi: 10.1046/j.1471-4159.2000.0740270.x
- Perry G, Nunomura A, Hirai K, et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med. 2002;33(11):1475–1479. doi: 10.1016/s0891-5849(02)01113-9
- Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis. 2009;16(4):879–895. doi: 10.3233/JAD-2009-1010
- Guillemot J, Canuel M, Essalmani R, et al. Implication of the proprotein convertases in iron homeostasis: proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin. Hepatology. 2013;57(6):2514–2524. doi: 10.1002/hep.26297
- Rogers JT, Randall JD, Cahill CM, et al. An iron-responsive element type II in the 5’-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem. 2002;277(47):45518–45528. doi: 10.1074/jbc.M207435200
- Lei P, Ayton S, Finkelstein DI, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med. 2012;18(2):291–295. doi: 10.1038/nm.2613
Supplementary files
