The Role of Hyperuricemia in the Development of Atrial Fibrillation
- Authors: Barysenka T.L.1, Snezhitskiy V.A.1
-
Affiliations:
- Grodno State Medical University
- Issue: Vol 1, No 1 (2021)
- Pages: 7-16
- Section: Reviews
- URL: https://journal-vniispk.ru/cardar/article/view/66609
- DOI: https://doi.org/10.17816/cardar66609
- ID: 66609
Cite item
Full Text
Abstract
Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. We have discussed the role of hyperuricemia as a predisposing factor for the onset of AF. Numerous clinical and experimental investigators demonstrated the correlation between serum uric acid (SUA) level and arrhythmia development and its complications. The development and progression of AF are connected to a complex of changes in atrial cardiac muscle tissue. The electrical, structural, contractile remodeling, neurohumoral systems, inflammation, fibrosis, oxidative stress, endothelial dysfunction, activation of NLRP3 inflammasome induced by crystals of monosodium urate (MSU), heat shock proteins (HSP), cytokines – all have a role in the development of this process. Furthermore, the role of xanthine oxidase (XO) is considered in the pathogenesis of AF through activation of systemic inflammation and oxidative stress, preparing that substrate for AF. The overwhelming data suggest a direct pathophysiological role of the increased SUA and XO activity as risk factors for AF. This article offers a comprehensive review of investigations that shows the interrelation between hyperuricemia and the risk of AF.
Full Text
##article.viewOnOriginalSite##About the authors
Tatyana L. Barysenka
Grodno State Medical University
Author for correspondence.
Email: t.kepourko@gmail.com
ORCID iD: 0000-0001-7117-2182
SPIN-code: 9280-0169
Scopus Author ID: 57202195752
Assistant of the Department
Belarus, 230009, Grodno, Maxim Gorky street, 80Viktor A. Snezhitskiy
Grodno State Medical University
Email: vsnezh@mail.ru
ORCID iD: 0000-0002-1706-1243
SPIN-code: 1697-0116
Scopus Author ID: 40762304300
MD, PhD, Professor
Belarus, 230009, Grodno, Maxim Gorky street, 80References
- Taufiq F, Li P, Miake J, Hisatome I. Hyperuricemia as a risk factor for atrial fibrillation due to soluble and crystalized uric acid. Circ Rep. 2019;1(11):469–473. doi: 10.1253/circrep.CR-19-0088
- Krijthe BP, Kunst A, Benjamin EJ, et al. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J. 2013;34(35):2746–2751. doi: 10.1093/eurheartj/eht28027462751
- Zozulya IS, Gandzha TI, Suprun AO, Olefirenko AS. Provision of emergency medical care for atrial fibrillation. Medicina neotlozhnykh sostoyanij. 2016;3–4:60–61. (In Russ.).
- Podzolkov VI, Tarzimanova AI, Gataulin RG, et al. The role of obesity in the development of atrial fibrillation: current problem status. Cardiovascular Therapy and Prevention. 2019;18(4):109–114. (In Russ.). doi: 10.15829/1728-8800-2019-4-109-114
- Camm AJ, Lip GY, De Caterina R, et al. 2012 focused update of the ESC guidelines for the management of atrial fibrillation: an update of the 2010 ESC guidelines for the management of atrial fibrillation — developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 2012;33(21):2719–2747. doi: 10.1093/eurheartj/ehs253
- Zhernakova Yu. Hyperuricemia as a risk factor for cardiovascular disease - what’s new? Medical Alphabet. 2020;(13):5–11. (In Russ.). doi: 10.33667/2078-5631-2020-13-5-11
- Bilchenko A. Hyperuricemia as a risk factor of cardiovascular morbidity and mortality.Korrekciya giperurikemii kak faktora riska serdechno-sosudistoj zabolevaemosti i smertnosti // Novosti mediciny i farmacii. 2011;5(389):53–58. (In Russ.).
- Donskov A, Balkarov I, Dadina Z, et al. Urate kidney damage and metabolic changes in patients with arterial hypertension. Terapevticheskij Arkhiv. 1999;(6):53–56. (In Russ.).
- Becker JF, Schumacher HR Jr, Wortmann RL. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005;353:2450–2461. doi: 10.1056/NEJMoa050373
- France LV, Pahor M, Di Bari M, et al. Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the elderly Program (SHEP). J Hypertens. 2000;18(8):1149–1154. doi: 10.1097/00004872-200018080-00021
- Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population. The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10): 3136–3141. doi: 10.1002/art.30520
- Liu B, Wang T, Zhao HN, et al. The prevalence of hyperuricemia in China: a meta-analysis. BMC Public Health. 2011;11:832. doi: 10.1186/1471-2458-11-832
- Qiu L, Cheng X, Wu J, et al. Prevalence of hyperuricemia and its related risk factors in healthy adults from Northern and Northeastern Chinese provinces. BMC Public health. 2013;13:664. doi: 10.1186/1471-2458-13-664
- Shal’nova SA, Deev AD, Artamonova GV, et al. Hyperuricemia and its correlates in the Russian population (results of the ESSE-RF epidemiological study). Rational Pharmacotherapy in Cardiology. 2014;10(2):153–159. (In Russ.).
- Wu AH, Gladden JD, Ahmed M, et al. Relation of serum uric acid to cardiovascular disease. Int J Cardiol. 2016;213:4–7. doi: 10.1016/j.ijcard.2015.08.110
- Hou L, Zhang M, Han W, et al. Influence of salt intake on association of blood uric acid with hypertension and related cardiovascular risk. PLoS One. 2016;11(4):e0150451. doi: 10.1371/journal.pone.0150451
- Ando K, Takahashi H, Watanabe T, et al. Impact of serum uric acid levels on coronary plaque stability evaluated using integrated backscatter intravascular ultrasound in patients with coronary artery disease. J Atheroscler Thromb. 2016;23(8):932–939. doi: 10.5551/jat.33951
- Bespalova I, Kalyuzhin V, Medyantsev Yu. Asyptomatic hyperuricemia as a metabolic syndrome component. Bulletin of Siberian Medicine. 2012;11(3):14–17. (In Russ.). doi: 10.20538/1682-0363-2012-3-14-17
- MacGowan S, Regan M, Malone C, et al. Superoxide radical and xanthine oxidoreductase activity in the human heart during cardiac operations. Ann Thorac Surg. 1995;60(5):1289–1293. doi: 10.1016/0003-4975(95)00616-S
- Korantzopoulos P, Letsas K, Liu T. Xanthine oxidase and uric acid in atrial fibrillation. Front Physiol. 2012;3:150. doi: 10.3389/fphys.2012.00150
- Letsas K, Korantzopoulos P, Filippatos G, et al. Uric acid elevation in atrial fibrillation. Hellenic J Cardiol. 2010;51(3):209–213.
- Yatskevich ES, Snezhitskiy VA. The influence of aldosterone and its antagonists on myocardial remodeling in ratients with atrial fibrillation. Journal of Grodno State Medical University. 2012;(4(40)):5–9. (In Russ.).
- Delcayre C, Swynghedauw B. Molecular mechanisms of myocardial remodelling. The role of aldosterone. J Mol Cell Cardiol. 2002;34(12):1577–1584. doi: 10.1006/jmcc.2002.2088
- Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol Rev. 2011;91(1):265–325. doi: 10.1152/physrev.00031.2009
- Patterson E, Jackman WM, Beckman KJ, et al. Spontaneous pulmonary vein firing in man: Relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro. J Cardiovasc Electrophysiol. 2007;18(10):1067–1075. doi: 10.1111/j.1540-8167.2007.00909.x
- Zholbaeva A, Tabina A, Goluhova E. Molecular mechanisms of atrial fibrillation: “ideal” marker searching. Creative Cardiology. 2015;(2):40–53. (In Russ.). doi: 10.15275/kreatkard.2015.02.04
- Dobrev D, Friedrich A, Voigt N, et al. The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation. 2005;112(24):3697–3706. doi: 10.1161/CIRCULATIONAHA.105.575332
- Snezhitskiy V. Electrophysiological atrial and sinus nodal remodeling phenomenon: mechanisms of development and pathogenesis. Clinical Medicine (Russian Journal). 2004;82(11): 10–14. (In Russ.).
- Jia G, Habibi J, Bostick BP, et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension. 2015;65(3):531–539. doi: 10.1161/HYPERTENSIONAHA.114.04737
- Maharani N, Ting YK, Cheng J, et al. Molecular mechanisms underlying urate-induced enhancement of Kv1.5 channel expression in HL-1 atrial myocytes. Circ J. 2015;79(12):2659–2668. doi: 10.1253/circj.CJ-15-0416
- Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014;2:323–332. doi: 10.1016/j.redox.2014.01.017
- Giannopoulos G, Cleman MW, Deftereos S. Inflammation fueling atrial fibrillation substrate: Seeking ways to “cool” the heart. Med Chem. 2014;10(7):663–671. doi: 10.2174/1573406410666140318110100
- Bubeshka DA, Snezhitskiy VA, Shulika VR. Biomarkers of inflammation in patients with nonvalvular atrial fibrillation and left ventricular systolic dysfunction. Medical News. 2017;(4):69–72. (In Russ.)
- Levy M, Thaiss CA, Elinav E. Taming the inflammasome. Nat Med. 2015;21(3):213–215. doi: 10.1038/nm.3808
- Bruins P, te Velthuis H, Yazdanbakhsh AP, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: Postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 1997;96(10):3542–3548. doi: 10.1161/01.cir.96.10.3542
- Yao C, Veleva T, Scott LJ, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138(20):2227–2242. doi: 10.1161/CIRCULATIONAHA.118.035202
- Putko BN, Wang Z, Lo J, et al. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: Evidence for a divergence in pathophysiology. PLoS One. 2014;9(6):e99495. doi: 10.1371/journal.pone.0099495
- Liew R, Khairunnisa K, Gu Y, et al. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ J. 2013;77(5):1171–1179. doi: 10.1253/circj.cj-12-1155
- Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–243. doi: 10.1038/nrcardio.2015.2
- Chung MK, Martin DO, Sprecher D, et al. C-reactive protein elevation in patients with atrial arrhythmias: Inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104(24):2886–2891. doi: 10.1161/hc4901.101760
- Chen Y, Xia Y, Han X, et al. Association between serum uric acid and atrial fibrillation: A cross-sectional community-based study in China. BMJ Open. 2017;7(12):e019037. DOI: 10.1136/ bmjopen-2017-019037
- Kuwabara M, Niwa K, Nishihara S, et al. Hyperuricemia is an independent competing risk factor for atrial fibrillation. Int J Cardiol. 2017;231:137–142. doi: 10.1016/j.ijcard.2016.11.268
- Zhang CH, Huang DS, Shen D. Association between serum uric acid levels and atrial fibrillation risk. Cell Physiol Biochem. 2016;38(4):1589–1595. doi: 10.1159/000443099
- Deshko M, Snezhitskiy V, Madekina G, et al. Prognostic value of hyperuricemia in patients with atrial fibrillation and heart failure with preserved ejection fraction. Cardiology. 2015;55(10):52–57. (In Russ.). doi: 10.18565/cardio.2015.10.52-57
- Kepurko TL, Snezhitskiy VA. Hyperuricemia as a risk factor for atrial fibrillation progression. Cardiology in Belarus. 2018;10(1): 125–132.
- Nyrnes A, Toft I, Njølstad I. Uric acid is associated with future atrial fibrillation: an 11-year follow-up of 6308 men and women-the Tromso Study. Europace. 2014;16(3):320–326. doi: 10.1093/europace/eut260
Supplementary files
