The Role of Hyperuricemia in the Development of Atrial Fibrillation

Cover Page

Cite item

Full Text

Abstract

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. We have discussed the role of hyperuricemia as a predisposing factor for the onset of AF. Numerous clinical and experimental investigators demonstrated the correlation between serum uric acid (SUA) level and arrhythmia development and its complications. The development and progression of AF are connected to a complex of changes in atrial cardiac muscle tissue. The electrical, structural, contractile remodeling, neurohumoral systems, inflammation, fibrosis, oxidative stress, endothelial dysfunction, activation of NLRP3 inflammasome induced by crystals of monosodium urate (MSU), heat shock proteins (HSP), cytokines – all have a role in the development of this process. Furthermore, the role of xanthine oxidase (XO) is considered in the pathogenesis of AF through activation of systemic inflammation and oxidative stress, preparing that substrate for AF. The overwhelming data suggest a direct pathophysiological role of the increased SUA and XO activity as risk factors for AF. This article offers a comprehensive review of investigations that shows the interrelation between hyperuricemia and the risk of AF.

About the authors

Tatyana L. Barysenka

Grodno State Medical University

Author for correspondence.
Email: t.kepourko@gmail.com
ORCID iD: 0000-0001-7117-2182
SPIN-code: 9280-0169
Scopus Author ID: 57202195752

Assistant of the Department

Belarus, 230009, Grodno, Maxim Gorky street, 80

Viktor A. Snezhitskiy

Grodno State Medical University

Email: vsnezh@mail.ru
ORCID iD: 0000-0002-1706-1243
SPIN-code: 1697-0116
Scopus Author ID: 40762304300

MD, PhD, Professor

Belarus, 230009, Grodno, Maxim Gorky street, 80

References

  1. Taufiq F, Li P, Miake J, Hisatome I. Hyperuricemia as a risk factor for atrial fibrillation due to soluble and crystalized uric acid. Circ Rep. 2019;1(11):469–473. doi: 10.1253/circrep.CR-19-0088
  2. Krijthe BP, Kunst A, Benjamin EJ, et al. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J. 2013;34(35):2746–2751. doi: 10.1093/eurheartj/eht28027462751
  3. Zozulya IS, Gandzha TI, Suprun AO, Olefirenko AS. Provision of emergency medical care for atrial fibrillation. Medicina neotlozhnykh sostoyanij. 2016;3–4:60–61. (In Russ.).
  4. Podzolkov VI, Tarzimanova AI, Gataulin RG, et al. The role of obesity in the development of atrial fibrillation: current problem status. Cardiovascular Therapy and Prevention. 2019;18(4):109–114. (In Russ.). doi: 10.15829/1728-8800-2019-4-109-114
  5. Camm AJ, Lip GY, De Caterina R, et al. 2012 focused update of the ESC guidelines for the management of atrial fibrillation: an update of the 2010 ESC guidelines for the management of atrial fibrillation — developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 2012;33(21):2719–2747. doi: 10.1093/eurheartj/ehs253
  6. Zhernakova Yu. Hyperuricemia as a risk factor for cardiovascular disease - what’s new? Medical Alphabet. 2020;(13):5–11. (In Russ.). doi: 10.33667/2078-5631-2020-13-5-11
  7. Bilchenko A. Hyperuricemia as a risk factor of cardiovascular morbidity and mortality.Korrekciya giperurikemii kak faktora riska serdechno-sosudistoj zabolevaemosti i smertnosti // Novosti mediciny i farmacii. 2011;5(389):53–58. (In Russ.).
  8. Donskov A, Balkarov I, Dadina Z, et al. Urate kidney damage and metabolic changes in patients with arterial hypertension. Terapevticheskij Arkhiv. 1999;(6):53–56. (In Russ.).
  9. Becker JF, Schumacher HR Jr, Wortmann RL. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005;353:2450–2461. doi: 10.1056/NEJMoa050373
  10. France LV, Pahor M, Di Bari M, et al. Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the elderly Program (SHEP). J Hypertens. 2000;18(8):1149–1154. doi: 10.1097/00004872-200018080-00021
  11. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population. The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10): 3136–3141. doi: 10.1002/art.30520
  12. Liu B, Wang T, Zhao HN, et al. The prevalence of hyperuricemia in China: a meta-analysis. BMC Public Health. 2011;11:832. doi: 10.1186/1471-2458-11-832
  13. Qiu L, Cheng X, Wu J, et al. Prevalence of hyperuricemia and its related risk factors in healthy adults from Northern and Northeastern Chinese provinces. BMC Public health. 2013;13:664. doi: 10.1186/1471-2458-13-664
  14. Shal’nova SA, Deev AD, Artamonova GV, et al. Hyperuricemia and its correlates in the Russian population (results of the ESSE-RF epidemiological study). Rational Pharmacotherapy in Cardiology. 2014;10(2):153–159. (In Russ.).
  15. Wu AH, Gladden JD, Ahmed M, et al. Relation of serum uric acid to cardiovascular disease. Int J Cardiol. 2016;213:4–7. doi: 10.1016/j.ijcard.2015.08.110
  16. Hou L, Zhang M, Han W, et al. Influence of salt intake on association of blood uric acid with hypertension and related cardiovascular risk. PLoS One. 2016;11(4):e0150451. doi: 10.1371/journal.pone.0150451
  17. Ando K, Takahashi H, Watanabe T, et al. Impact of serum uric acid levels on coronary plaque stability evaluated using integrated backscatter intravascular ultrasound in patients with coronary artery disease. J Atheroscler Thromb. 2016;23(8):932–939. doi: 10.5551/jat.33951
  18. Bespalova I, Kalyuzhin V, Medyantsev Yu. Asyptomatic hyperuricemia as a metabolic syndrome component. Bulletin of Siberian Medicine. 2012;11(3):14–17. (In Russ.). doi: 10.20538/1682-0363-2012-3-14-17
  19. MacGowan S, Regan M, Malone C, et al. Superoxide radical and xanthine oxidoreductase activity in the human heart during cardiac operations. Ann Thorac Surg. 1995;60(5):1289–1293. doi: 10.1016/0003-4975(95)00616-S
  20. Korantzopoulos P, Letsas K, Liu T. Xanthine oxidase and uric acid in atrial fibrillation. Front Physiol. 2012;3:150. doi: 10.3389/fphys.2012.00150
  21. Letsas K, Korantzopoulos P, Filippatos G, et al. Uric acid elevation in atrial fibrillation. Hellenic J Cardiol. 2010;51(3):209–213.
  22. Yatskevich ES, Snezhitskiy VA. The influence of aldosterone and its antagonists on myocardial remodeling in ratients with atrial fibrillation. Journal of Grodno State Medical University. 2012;(4(40)):5–9. (In Russ.).
  23. Delcayre C, Swynghedauw B. Molecular mechanisms of myocardial remodelling. The role of aldosterone. J Mol Cell Cardiol. 2002;34(12):1577–1584. doi: 10.1006/jmcc.2002.2088
  24. Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol Rev. 2011;91(1):265–325. doi: 10.1152/physrev.00031.2009
  25. Patterson E, Jackman WM, Beckman KJ, et al. Spontaneous pulmonary vein firing in man: Relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro. J Cardiovasc Electrophysiol. 2007;18(10):1067–1075. doi: 10.1111/j.1540-8167.2007.00909.x
  26. Zholbaeva A, Tabina A, Goluhova E. Molecular mechanisms of atrial fibrillation: “ideal” marker searching. Creative Cardiology. 2015;(2):40–53. (In Russ.). doi: 10.15275/kreatkard.2015.02.04
  27. Dobrev D, Friedrich A, Voigt N, et al. The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation. 2005;112(24):3697–3706. doi: 10.1161/CIRCULATIONAHA.105.575332
  28. Snezhitskiy V. Electrophysiological atrial and sinus nodal remodeling phenomenon: mechanisms of development and pathogenesis. Clinical Medicine (Russian Journal). 2004;82(11): 10–14. (In Russ.).
  29. Jia G, Habibi J, Bostick BP, et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension. 2015;65(3):531–539. doi: 10.1161/HYPERTENSIONAHA.114.04737
  30. Maharani N, Ting YK, Cheng J, et al. Molecular mechanisms underlying urate-induced enhancement of Kv1.5 channel expression in HL-1 atrial myocytes. Circ J. 2015;79(12):2659–2668. doi: 10.1253/circj.CJ-15-0416
  31. Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014;2:323–332. doi: 10.1016/j.redox.2014.01.017
  32. Giannopoulos G, Cleman MW, Deftereos S. Inflammation fueling atrial fibrillation substrate: Seeking ways to “cool” the heart. Med Chem. 2014;10(7):663–671. doi: 10.2174/1573406410666140318110100
  33. Bubeshka DA, Snezhitskiy VA, Shulika VR. Biomarkers of inflammation in patients with nonvalvular atrial fibrillation and left ventricular systolic dysfunction. Medical News. 2017;(4):69–72. (In Russ.)
  34. Levy M, Thaiss CA, Elinav E. Taming the inflammasome. Nat Med. 2015;21(3):213–215. doi: 10.1038/nm.3808
  35. Bruins P, te Velthuis H, Yazdanbakhsh AP, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: Postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 1997;96(10):3542–3548. doi: 10.1161/01.cir.96.10.3542
  36. Yao C, Veleva T, Scott LJ, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138(20):2227–2242. doi: 10.1161/CIRCULATIONAHA.118.035202
  37. Putko BN, Wang Z, Lo J, et al. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: Evidence for a divergence in pathophysiology. PLoS One. 2014;9(6):e99495. doi: 10.1371/journal.pone.0099495
  38. Liew R, Khairunnisa K, Gu Y, et al. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ J. 2013;77(5):1171–1179. doi: 10.1253/circj.cj-12-1155
  39. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–243. doi: 10.1038/nrcardio.2015.2
  40. Chung MK, Martin DO, Sprecher D, et al. C-reactive protein elevation in patients with atrial arrhythmias: Inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104(24):2886–2891. doi: 10.1161/hc4901.101760
  41. Chen Y, Xia Y, Han X, et al. Association between serum uric acid and atrial fibrillation: A cross-sectional community-based study in China. BMJ Open. 2017;7(12):e019037. DOI: 10.1136/ bmjopen-2017-019037
  42. Kuwabara M, Niwa K, Nishihara S, et al. Hyperuricemia is an independent competing risk factor for atrial fibrillation. Int J Cardiol. 2017;231:137–142. doi: 10.1016/j.ijcard.2016.11.268
  43. Zhang CH, Huang DS, Shen D. Association between serum uric acid levels and atrial fibrillation risk. Cell Physiol Biochem. 2016;38(4):1589–1595. doi: 10.1159/000443099
  44. Deshko M, Snezhitskiy V, Madekina G, et al. Prognostic value of hyperuricemia in patients with atrial fibrillation and heart failure with preserved ejection fraction. Cardiology. 2015;55(10):52–57. (In Russ.). doi: 10.18565/cardio.2015.10.52-57
  45. Kepurko TL, Snezhitskiy VA. Hyperuricemia as a risk factor for atrial fibrillation progression. Cardiology in Belarus. 2018;10(1): 125–132.
  46. Nyrnes A, Toft I, Njølstad I. Uric acid is associated with future atrial fibrillation: an 11-year follow-up of 6308 men and women-the Tromso Study. Europace. 2014;16(3):320–326. doi: 10.1093/europace/eut260

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. De novo purine synthesis. Phosphoribosyl pyrophosphate synthetase (PRPP-S), adenosine triphosphate (ATP), phosphoribosyl pyrophosphate (PRPP), inosine monophosphate (IMP), guanosine triphosphate (GTP), hypoxanthine-guanine phosphoribosyltransferase (HGPRT), xanthine oxidase (XO).

Download (451KB)

Copyright (c) 2021 Barysenka T.L., Snezhitskiy V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».