The methods of perfecting the surface of titanium alloy-based endoprostheses used in pediatric oncology
- Authors: Gorokhova E.K.1, Markov N.M.1, Grachev N.S.1, Lopatin A.V.1, Vorozhtsov I.N.1, Dudaeva A.A.1
-
Affiliations:
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
- Issue: Vol 15, No 3 (2024)
- Pages: 68-74
- Section: Reviews
- URL: https://journal-vniispk.ru/clinpractice/article/view/268725
- DOI: https://doi.org/10.17816/clinpract609557
- ID: 268725
Cite item
Abstract
The rehabilitation of pediatric patients with oncology diseases localized in the maxillofacial area is a complex and long-term process. Most frequently, the resection area involves the maxilla or the mandible, which, in turn, impairs the functioning of the whole dentofacial system. The restoration of the integrity of the facial structures is the key task in the treatment of such patients. One of the main materials used for reconstructing the jaws is the titanium alloy. However, despite its beneficial properties and characteristics, there is a high risk of inflammation, encapsulation or failure of the endoprosthesis. The aim of the research was to analyze the data available up to date on the methods of perfecting the surfaces of titanium endoprostheses based on the published research works. After analyzing the articles devoted to the modification of the surface of titanium constructions used for endoprosthetics, for the period from 2008 until 2022 (n=41), we came to a conclusion that the modification of the surface of titanium endoprostheses results in an increase in its osteointegration, which decreases the risks of failure for the constructions.
Full Text
##article.viewOnOriginalSite##About the authors
Elizaveta K. Gorokhova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Author for correspondence.
Email: elizavetagorokhova@yandex.ru
ORCID iD: 0000-0003-1237-0802
Russian Federation, Moscow
Nikolay M. Markov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: markovnm@mail.ru
ORCID iD: 0000-0003-1063-6590
SPIN-code: 2202-2448
MD, PhD
Russian Federation, MoscowNikolai S. Grachev
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: nick-grachev@yandex.ru
ORCID iD: 0000-0002-4451-3233
MD, PhD
Russian Federation, MoscowAndrey V. Lopatin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: and-lopatin@yandex.ru
ORCID iD: 0000-0001-7600-6191
SPIN-code: 6341-8912
MD, PhD, Professor
Russian Federation, MoscowIgor N. Vorozhtsov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: Dr.Vorozhtsov@gmail.com
ORCID iD: 0000-0002-3932-6257
SPIN-code: 6155-9348
MD, PhD
Russian Federation, MoscowAnna A. Dudaeva
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: dudaeva.dr@gmail.com
ORCID iD: 0000-0002-2438-1202
SPIN-code: 1719-7756
Russian Federation, Moscow
References
- Кропотов М.А., Соболевский В.А. Первичные опухоли нижней челюсти. Лечение, реконструкция и прогноз // Саркомы костей, мягких тканей и опухолей кожи. 2010. № 2. С. 9–21. [Kropotov MA, Sobolevskiy VA. Primary mandibular tumors, treatment, reconstruction and prognosis. Bone Soft Tissue Sarcomas Tumors Skin. 2010;(2):9–21]. EDN: TWKHID
- Martinez-Maza C, Rosas A, Nieto-Díaz M. Postnatal changes in the growth dynamics of the human face revealed from bone modelling patterns. J Anat. 2013;223(3):228–241. doi: 10.1111/joa.12075
- Марков Н.М., Грачев Н.С., Бабаскина Н.В., и др. Стоматологическая реабилитация в комплексном лечении детей и подростков с новообразованиями челюстно-лицевой области // Стоматология. 2020. Т. 99, № 6-2. С. 44–62. [Markov NM, Grachev NS, Babaskina NV, et al. Dental rehabilitation in the complex treatment of children and adolescents with maxillofacial neoplasms. Stomatologiya. 2020;99(6-2):44–62]. EDN: SNSPAH doi: 10.17116/stomat20209906244
- Aydin S, Kucukyuruk B, Abuzayed B, et al. Cranioplasty: Review of materials and techniques. J Neurosci Rural Pract. 2011;2(2):162–167. doi: 10.4103/0976-3147.83584
- Афанасов М.В., Лопатин А.В., Ясонов С.А., Косырева Т.Ф. Лечение пострезекционных дефектов нижней челюсти у детей // Детская хирургия. 2016. Т. 20, № 6. С. 314–319. [Afanasov MV, Lopatin AV, Yasonov SA, Kosyreva TF. Reatment of post-resection mandibular defects in children. Detskaya khirurgiya (Russian Journal of Pediatric Surgery). 2016;20(6):314–319]. EDN: XRFZCH doi: 10.18821/1560-9510-2016-20-6-314-319
- Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C Mater Biol Appl. 2019;102:844–862. EDN: KGICSX doi: 10.1016/j.msec.2019.04.064
- Cvijović-Alagić Z, Cvijović J, Maletaškić M. Rakin, initial microstructure effect on the mechanical properties of Ti-6Al-4V ELI alloy processed by high-pressure torsion. Materials Science and Engineering: A. 2018;736(6):175–192. doi: 10.1016/j.msea.2018.08.094
- Парфенов Е.В., Парфенова Л.В. Биомиметические покрытия на основе плазменно-электролитического оксидирования и функциональных органических молекул для имплантатов из титановых сплавов // Гены и клетки. 2022. Т. 17, № 3. С. 173–174. [Parfenov EV, Parfenova LV. Biomimetic coatings based on plasma electrolytic oxidation and functional organic molecules for implants from titanium alloy. Genes Cells. 2022;17(3):173–174]. EDN: KGJAWG
- Yerokhin AL, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering: Materials engineering. Surface Coatings Technology. 1999;122(2-3):73–93. doi: 10.1016/S0257-8972(99)00441-7
- Mosab K, Siti F, Nisa N, Young GK. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Progress Materials Science. 2020;117(29):100735. EDN: IRZGBE doi: 10.1016/j.pmatsci.2020.100735
- Zhang LC, Chen LYu, Wang L. Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Advanced Engineering Materials. 2020;22(5):2070017. EDN: KEXUWL doi: 10.1002/adem.202070017
- Yerokhin A, Parfenov EV, Matthews A, in situ impedance spectroscopy of the plasma electrolytic oxidation process for deposition of Ca- and P-containing coatings on Ti. Surface Coatings Technology. 2016;301:54–62. EDN: YUUVDL doi: 10.1016/j.surfcoat.2016.02.035
- Гнеденков С.В., Шаркеев Ю.П., Синебрюхов С.Л., и др. Кальций-фосфатные биоактивные покрытия на титане // Вестник ДВО РАН. 2010. № 5. С. 47–57. [Gnedenkov SV, Sharkeyev YP, Sinebryukhov SL, et al. Сalcium-phosphate bioactive coatings on titanium. Vestnik Far East Branch Russ Acad Sci. 2010;(5): 47–57]. EDN: OWPYCR
- Parfenova LV, Lukina ES, Galimshina ZR, et al. Biocompatible organic coatings based on bisphosphonic acid RGD-derivatives for PEO-modified titanium implants. Molecules. 2020;25(1):229. EDN: NQSAWM doi: 10.3390/molecules25010229
- Parfenov EV, Parfenova LV, Dyakonov GS, et al. Surface functionalization via PEO coating and RGD peptide for nanostructured titanium implants and there in vitro assessment. Surface Coatings Technology. 2019;357(B):669–683. EDN: GPTPDP doi: 10.1016/j.surfcoat.2018.10.068
- Shehadeh A, Noveau J, Malawer M, et al. Late complications and survival of endoprosthetic reconstruction after resection of bone tumors. Clin Orthop Relat Res. 2010;468:2885–2895. doi: 10.1007/s11999-010-1454-x
- Bohara S, Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: A review. Biomater Res. 2022;26(1):26. EDN: EVDMWR doi: 10.1186/s40824-022-00269-3
- Humphreys H. Surgical site infection, ultraclean ventilated operating theatres and prosthetic joint surgery: Where now? J Hospital Infection. 2012;81(2):71–72. doi: 10.1016/j.jhin.2012.03.007
- Bratzler DW, Dellinger EP, Olsen KM, et al.; American Society of Health-System Pharmacists (ASHP); Infectious Diseases Society of America (IDSA); Surgical Infection Society (SIS); Society for Healthcare Epidemiology of America (SHEA). Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt). 2013;14(1):73–156. doi: 10.1089/sur.2013.9999
- Illingworth KD, Mihalko WM, Parvizi J, et al. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: A multicenter approach. AAOS exhibit selection. J Bone Joint Surg Am. 2013;95(8):e50. doi: 10.2106/JBJS.L.00596
- Namba RS. Risk factors associated with surgical site infection in 30,491 primary total hip replacements. J Bone Joint Surgery. British. 2012;94(10):1330–1338. doi: 10.1302/0301-620X.94B10.29184
- Moriarty TF, Schlegel U, Perren S, Richards RG. Infection in fracture fixation: Can we influence infection rates through implant design? J Mater Sci Mater Med. 2010;21(3):1031–1035. EDN: NSCTNG doi: 10.1007/s10856-009-3907-x
- Jämsen E, Furnes O, Engesaeter LB, et al. Prevention of deep infection in joint replacement surgery. Acta Orthopaedica. 2010;81(6):660–666. doi: 10.3109/17453674.2010.537805
- Yazici H, O’Neill MB, Kacar T, et al. Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants. ACS Applied Materials Interfaces. 2016;8(6): 5070–5081. doi: 10.1021/acsami.5b03697
- Zhang L, Yan J, Yin Z, et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomedicine. 2014;9(1): 3027–3036. doi: 10.2147/IJN.S63991
- Hirschfeld J, Akinoglu EM, Wirtz DC, et al. Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomedicine: Nanotechnology, Biology Medicine. 2017; 13(4):1587–1593. EDN: YGQVGJ doi: 10.1016/j.nano.2017.01.002
- Ranjous Y, Regdon G, Pintye-Hódi K, Sovány T. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discovery Today. 2019;24(9):1704–1709. doi: 10.1016/j.drudis.2019.05.019
- Applerot G, Lipovsky A, Dror R, et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater. 2009;19(6):842–852. doi: 10.1002/adfm.200801081
- Miao S, Cheng K, Weng W, et al. Fabrication and evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability. Acta Biomater. 2008;4(2):441–446. EDN: KOGUGD doi: 10.1016/j.actbio.2007.08.013
- Zreiqat H, Ramaswamy Y, Wu C, et al. The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. Biomaterials. 2010;31(12):3175–3184. doi: 10.1016/j.biomaterials.2010.01.024
- Wu C, Ramaswamy Y, Chang J, et al. The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics. J Biomed Mater Res B Appl Biomater. 2008;87(2):346–353. doi: 10.1002/jbm.b.31109
- Ramaswamy Y, Wu C, Zhou H, Zreiqat H. Biological response of human bone cells to zinc-modified Ca-Si-based ceramics. Acta Biomater. 2008;4(5):1487–1497. EDN: KOGSQP doi: 10.1016/j.actbio.2008.04.014
- Zhang HW, Qiao Y, Jiang X, et al. Ding, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomaterialia. 2012;8(2): 904–915. doi: 10.1016/j.actbio.2011.09.031
- Shimabukuro M. Antibacterial property and biocompatibility of silver, copper, and zinc in titanium dioxide layers incorporated by one-step micro-arc oxidation: A review. Antibiotics. 2020;9(10):716. doi: 10.3390/antibiotics9100716
- Shearier ER, Bowen PK, He W, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomater Sci Eng. 2016;2(4):634–642. doi: 10.1021/acsbiomaterials.6b00035
- Зайцев В.В., Карягина А.С., Лунин В.Г. Костные морфогенетические белки (ВМР): общая характеристика, перспективы клинического применения в травматологии и ортопедии // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2009. № 4. С. 79–84. [Zaitsev VV, Karyagina AS, Lunin VG. Bone morphogenetic proteins (BMPs): General characteristics, prospects of clinical application in traumatology and orthopaedics. Vestnik travmatologii i ortopedii im. N.N. Priorova. 2009;(4):79–84. (In Russ.)]
- Liu Z, Xu Z, Wang X, et al. Construction and osteogenic effects of 3D-printed porous titanium alloy loaded with VEGF/BMP-2 shell-core microspheres in a sustained-release system. Front Bioeng Biotechnol. 2022;10:1028278. EDN: MCLUHL doi: 10.3389/fbioe.2022.1028278
- Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone morphogenetic proteins: A powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors. 2014;40(5):459–481. doi: 10.1002/biof.1177
- Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBio Medicine. 2019; 41:702–710. doi: 10.1016/j.ebiom.2019.02.033
- Wang MH, Zhou XM, Zhang MY, et al. BMP2 promotes proliferation and invasion of nasopharyngeal carcinoma cells via mTORC1 pathway. Aging (Albany NY). 2017;9(4):1326–1340. doi: 10.18632/aging.101230
Supplementary files
