Liquid biopsy of gliomas with detection of extracellular tumor nucleic acids

Cover Page

Cite item

Abstract

Gliomas are the reason of fatal outcomes in an overwhelming number of patients with oncology diseases located in the central nervous system. The diagnostics of such neoplasms requires using stereotaxic biopsy, which cannot be performed in a certain percentage of the patients. Besides, this disease is characterized by high recurrence rates, despite the advances in developing resection and chemotherapy — based technologies. The early detection of oncological diseases located in the central nervous system and the differential diagnostics of tumor pseudo progression, not affecting the survival of the patient, represents a challenge for modern Medicine. Liquid biopsy is a minimally invasive diagnostic method based on the analysis of tumor derivatives (such as extracellular tumor DNA and RNA), contained within the biological fluids of the organism. For the purpose of defining the presence of the tumor component, the tests are used to detect the so-called hot-spot mutations and the patterns of epigenetic regulation, found in specific types of tumors. The technology can be used for detecting tumor recurrences and for the differential diagnostics of space-occupying mass lesions in patients, in which stereotaxic biopsy is contraindicated. The review contains a discussion on modern advances of fluid biopsy based on the analysis of the extracellular tumor DNA and RNA levels in blood plasma and in the cerebrospinal fluid of glioma patients.

About the authors

Tagir I. Rakhmatullin

Lomonosov Moscow State University

Author for correspondence.
Email: tagir.rakhmatullin@internet.ru
ORCID iD: 0000-0002-4601-3478
SPIN-code: 7068-1678
Russian Federation, Moscow

Mark Jain

Lomonosov Moscow State University

Email: jain-mark@outlook.com
ORCID iD: 0000-0002-6594-8113
SPIN-code: 3783-4441

Cand. Sci. (Biology)

Russian Federation, Moscow

Larisa M. Samokhodskaya

Lomonosov Moscow State University

Email: slm@fbm.msu.ru
ORCID iD: 0000-0001-6734-3989
SPIN-code: 5404-6202

MD, PhD, Associate Professor

Russian Federation, Moscow

Andrey A. Zuev

National Medical and Surgical Center named after N.I. Pirogov

Email: mosbrain@gmail.com
ORCID iD: 0000-0003-2974-1462
SPIN-code: 9377-4574

MD, PhD, Professor

Russian Federation, Moscow

References

  1. Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2021;23(12, Suppl. 2):III1–III105. EDN: LFHEVS doi: 10.1093/neuonc/noab200
  2. Claus EB, Walsh KM, Wiencke JK, et al. Survival and low grade glioma: The emergence of genetic information. Neurosurg Focus. 2015;38(1):E6. EDN: WOMMTF doi: 10.3171/2014.10.FOCUS12367
  3. Kim YZ, Kim CY, Lim DH. The overview of practical guidelines for gliomas by KSNO, NCCN, and EANO. Brain Tumor Res Treat. 2022;10(2):83-93. EDN: KTLYBB doi: 10.14791/btrt.2022.0001
  4. Schomas DA, Issa Laack NN, Rao RD, et al. Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic. Neuro Oncol. 2009;11(4):437. doi: 10.1215/15228517-2008-102
  5. Kumar AA, Koshy AA. Regression of recurrent high-grade glioma with temozolomide, dexamethasone, and levetiracetam: Case report and review of the literature. World Neurosurg. 2017;108:990.e11–990.e16. EDN: YIAOAT doi: 10.1016/j.wneu.2017.08.136
  6. Young JS, Al-Adli N, Scotford K, et al. Pseudoprogression versus true progression in glioblastoma: What neurosurgeons need to know. J Neurosurg. 2023;139(3):748–759. doi: 10.3171/2022.12.JNS222173
  7. Van West SE, de Bruin HG, van de Langerijt B, et al. Incidence of pseudoprogression in low-grade gliomas treated with radiotherapy. Neuro Oncol. 2017;19(5):719–725. doi: 10.1093/neuonc/now194
  8. Dhawan S, Venteicher AS, Butler WE, et al. Clinical outcomes as a function of the number of samples taken during stereotactic needle biopsies: A meta-analysis. J Neurooncol. 2021;154(1): 1–11. EDN: IEQEAH doi: 10.1007/s11060-021-03785-9
  9. Climans SA, Ramos RC, Laperriere N, et al. Outcomes of presumed malignant glioma treated without pathological confirmation: A retrospective, single-center analysis. Neurooncol Pract. 2020;7(4):446. EDN: UTYRNS doi: 10.1093/nop/npaa009
  10. Stapińska-Syniec A, Rydzewski M, Acewicz A, et al. Atypical clinical presentation of glioblastoma mimicking autoimmune meningitis in an adult. Folia Neuropathol. 2022;60(2):250–256. EDN: NQZOPD doi: 10.5114/fn.2022.117267
  11. Lazzari M, Pronello E, Covelli A, et al. Cerebral nocardiosis mimicking disseminated tumor lesions in a patient with recurrent glioblastoma. Neurological Sciences. 2023;44(6):2213–2215. EDN: SGOKXO doi: 10.1007/s10072-023-06678-z
  12. Morokoff A, Jones J, Nguyen H, et al. Serum microRNA is a biomarker for post-operative monitoring in glioma. J Neurooncol. 2020;149(3):391–400. EDN: CJKNFN doi: 10.1007/s11060-020-03566-w
  13. Piccioni DE, Achrol AS, Kiedrowski LA, et al. Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. CNS Oncol. 2019;8(2):CNS34. doi: 10.2217/cns-2018-0015
  14. De Vleeschouwer S. Glioblastoma. Codon Publications; 2017. 432 р. doi: 10.15586/codon.glioblastoma.2017
  15. Kim TY, Zhong S, Fields CR, et al. Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res. 2006;66(15):7490–7501. doi: 10.1158/0008-5472.CAN-05-4552
  16. Guo X, Piao H. Research progress of circRNAs in glioblastoma. Front Cell Dev Biol. 2021;9:791892. EDN: ONOIHC doi: 10.3389/fcell.2021.791892
  17. Gareev I, de Ramirez MJ, Nurmukhametov R, et al. The role and clinical relevance of long non-coding RNAs in glioma. Noncoding RNA Res. 2023;8(4):562–570. EDN: UTRVKO doi: 10.1016/j.ncrna.2023.08.005
  18. Pös O, Biró O, Szemes T, Nagy B. Circulating cell-free nucleic acids: Characteristics and applications. Eur J Human Genetics. 2018;26(7):937. doi: 10.1038/s41431-018-0132-4
  19. Faria G, Silva E, Da Fonseca C, et al. Circulating cell-free DNA as a prognostic and molecular marker for patients with brain tumors under perillyl alcohol-based therapy. Int J Mol Sci. 2018;19(6):1610. EDN: VHZWWW doi: 10.3390/ijms19061610
  20. Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211. doi: 10.1016/j.tibs.2015.12.001
  21. Pan C, Diplas BH, Chen X, et al. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol. 2019;137(2):297–306. EDN: LDWLGJ doi: 10.1007/s00401-018-1936-6
  22. Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565(7741):654–658. EDN: NRCYOO doi: 10.1038/s41586-019-0882-3
  23. Yu J, Sheng Z, Wu S, et al. Tumor DNA from tumor in situ fluid reveals mutation landscape of minimal residual disease after glioma surgery and risk of early recurrence. Front Oncol. 2021;11:742037. doi: 10.3389/fonc.2021.742037
  24. Bagley SJ, Nabavizadeh SA, Mays JJ, et al. Clinical utility of plasma cell-free DNA in adult patients with newly diagnosed glioblastoma: A pilot prospective study. Clin Cancer Res. 2020;26(2):397–407. doi: 10.1158/1078-0432.CCR-19-2533
  25. Zhang L, Wang M, Wang W, Mo J. Incidence and prognostic value of multiple gene promoter methylations in gliomas. J Neurooncol. 2014;116(2):349–356. EDN: SRKETB doi: 10.1007/s11060-013-1301-5
  26. Fujioka Y, Hata N, Akagi Y, et al. Molecular diagnosis of diffuse glioma using a chip-based digital PCR system to analyze IDH, TERT, and H3 mutations in the cerebrospinal fluid. J Neurooncol. 2021;152(1):47–54. EDN: EMWSRK doi: 10.1007/s11060-020-03682-7
  27. Muralidharan K, Yekula A, Small JL, et al. TERT promoter mutation analysis for blood-based diagnosis and monitoring of gliomas. Clin Cancer Res. 2021;27(1):169–178. doi: 10.1158/1078-0432.CCR-20-3083
  28. Husain A, Mishra S, Siddiqui MH, Husain N. Detection of IDH1 mutation in cfDNA and tissue of adult diffuse glioma with allele-specific qPCR. Asian Pac J Cancer Prev. 2023;24(3):961–968. EDN: YBNCDQ doi: 10.31557/APJCP.2023.24.3.961
  29. Fontanilles M, Marguet F, Beaussire L, et al. Cell-free DNA and circulating TERT promoter mutation for disease monitoring in newly-diagnosed glioblastoma. Acta Neuropathol Commun. 2020;8(1):179. EDN: FZDHVP doi: 10.1186/s40478-020-01057-7
  30. Liu G, Bu C, Guo G, et al. Molecular and clonal evolution in vivo reveal a common pathway of distant relapse gliomas. Science. 2023;26(9):107528. EDN: ONTVUA doi: 10.1016/j.isci.2023.107528
  31. Juratli TA, Stasik S, Zolal A, et al. TERT promoter mutation detection in cell-free tumor-derived DNA in patients with IDH wild-type glioblastomas: A pilot prospective study. Clin Cancer Res. 2018;24(21):5282–5291. EDN: QVPXJX doi: 10.1158/1078-0432.CCR-17-3717
  32. Labussière M, Boisselier B, Mokhtari K, et al. Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes. Neurology. 2014;83(13):1200–1206. doi: 10.1212/WNL.0000000000000814
  33. Gong M, Shi W, Qi J, et al. Alu hypomethylation and MGMT hypermethylation in serum as biomarkers of glioma. Oncotarget. 2017;8(44):76797–76806. doi: 10.18632/oncotarget.20012
  34. Dai L, Liu Z, Zhu Y, Ma L. Genome-wide methylation analysis of circulating tumor DNA: A new biomarker for recurrent glioblastom. Heliyon. 2023;9(3):e14339. EDN: RHDLGH doi: 10.1016/j.heliyon.2023.e14339
  35. Sabedot TS, Malta TM, Snyder J, et al. A serum-based DNA methylation assay provides accurate detection of glioma. Neuro Oncol. 2021;23(9):1494–1508. EDN: TOBMEP doi: 10.1093/neuonc/noab023
  36. Majchrzak-Celińska A, Paluszczak J, Kleszcz R, et al. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet. 2013;54(3):335–344. EDN: IEYYGZ doi: 10.1007/s13353-013-0149-x
  37. Liu BL, Cheng JX, Zhang W, et al. Quantitative detection of multiple gene promoter hypermethylation in tumor tissue, serum, and cerebrospinal fluid predicts prognosis of malignant gliomas. Neuro Oncol. 2010;12(6):540–548. doi: 10.1093/neuonc/nop064
  38. Wakabayashi T, Natsume A, Hatano H, et al. p16 Promoter methylation in the serum as a basis for the molecular diagnosis of gliomas. Neurosurgery. 2009;64(3):455–461; discussion 461-2. doi: 10.1227/01.NEU.0000340683.19920.E3
  39. Lavon I, Refael M, Zelikovitch B, et al. Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro Oncol. 2010;12(2):173–180. EDN: NAGGRH doi: 10.1093/neuonc/nop041
  40. Wang Z, Jiang W, Wang Y, et al. MGMT promoter methylation in serum and cerebrospinal fluid as a tumor-specific biomarker of glioma. Biomed Rep. 2015;3(4):543–548. doi: 10.3892/br.2015.462
  41. Fiano V, Trevisan M, Trevisan E, et al. MGMT promoter methylation in plasma of glioma patients receiving temozolomide. J Neurooncol. 2014;117(2):347–357. EDN: UUSJCP doi: 10.1007/s11060-014-1395-4
  42. Larson MH, Pan W, Kim HJ, et al. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. Nature Communications. 2021;12(1):2357. EDN: JSOHEV doi: 10.1038/s41467-021-22444-1
  43. Akers JC, Hua W, Li H, et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget. 2017;8(40):68769. doi: 10.18632/oncotarget.18332
  44. Wang Q, Li P, Li A, et al. Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J Exp Clin Cancer Res. 2012;31(1):97. EDN: QZSZWG doi: 10.1186/1756-9966-31-97
  45. Ita MI, Wang JH, Toulouse A, et al. The utility of plasma circulating cell-free messenger RNA as a biomarker of glioma: A pilot study. Acta Neurochir (Wien). 2022;164(3):723–735. doi: 10.1007/s00701-021-05014-8
  46. Yin K, Liu X. CircMMP1 promotes the progression of glioma through miR-433/HMGB3 axis in vitro and in vivo. IUBMB Life. 2020;72(11):2508–2524. doi: 10.1002/iub.2383
  47. Stella M, Falzone L, Caponnetto A, et al. Serum extracellular vesicle-derived circHIPK3 and circSMARCA5 Are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals (Basel). 2021;14(7):618. EDN: BEHBAW doi: 10.3390/ph14070618
  48. Swellam M, Bakr NM, El Magdoub HM, et al. Emerging role of miRNAs as liquid biopsy markers for prediction of glioblastoma multiforme prognosis. J Mol Neurosci. 2021;71(4):836–844. EDN: CTKSSV doi: 10.1007/s12031-020-01706-5
  49. Batool SM, Muralidharan K, Hsia T, et al. Highly sensitive EGFRvIII detection in circulating extracellular vesicle RNA of glioma patients. Clin Cancer Res. 2022;28(18):4070–4082. EDN: SSJLGI doi: 10.1158/1078-0432.CCR-22-0444
  50. Zhi F, Shao N, Wang R, et al. Identification of 9 serum microRNAs as potential noninvasive biomarkers of human astrocytoma. Neuro Oncol. 2015;17(3):383–391. doi: 10.1093/neuonc/nou169
  51. Díaz Méndez AB, Sacconi A, Tremante E, et al. A diagnostic circulating miRNA signature as orchestrator of cell invasion via TKS4/TKS5/EFHD2 modulation in human gliomas. J Exp Clin Cancer Res. 2023;42(1):66. EDN: NUHLLI doi: 10.1186/s13046-023-02639-8
  52. Zhao H, Shen J, Hodges TR, et al. Serum microRNA profiling in patients with glioblastoma: A survival analysis. Mol Cancer. 2017;16(1):59. EDN: SCWKPU doi: 10.1186/s12943-017-0628-5
  53. Taylor SC, Laperriere G, Germain H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Scientific Reports. 2017;7(1):2409. doi: 10.1038/s41598-017-02217-x
  54. Cheng YW, Stefaniuk C, Jakubowski MA. Real-time PCR and targeted next-generation sequencing in the detection of low level EGFR mutations: Instructive case analyses. Respir Med Case Rep. 2019;28:100901. doi: 10.1016/j.rmcr.2019.100901
  55. QIAGEN [Electronic resource]. QIAamp circulating nucleic acid handbook [October, 2019]. Режим доступа: https://www.qiagen.com/us/resources/resourcedetail?id=0c4b31ab-f4fb-425f-99bf-10ab9538c061&lang=en. Дата обращения: 20.07.2024.
  56. EXIQON Seek Find Verify [Electronic resource]. miRCURYTM RNA isolation Kit-biofluids. Instruction manual v1.7 #300112 and #300113 [November, 2015]. Режим доступа: https://labettor.com/uploads/products/protocols/411.pdf. Дата обращения: 20.07.2024.
  57. Kint S, De Spiegelaere W, De Kesel J, et al. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS One. 2018;13(6):e0199091. doi: 10.1371/journal.pone.0199091
  58. Martisova A, Holcakova J, Izadi N, et al. DNA methylation in solid tumors: Functions and methods of detection. Int J Mol Sci. 2021;22(8):4247. EDN: AGKKRD doi: 10.3390/ijms22084247
  59. Takara Bio Inc [Electronic resource]. Methylation-sensitive restriction enzymes (MSREs). Режим доступа: https://www.takarabio.com/us/products/cell_biology_and_epigenetics/epigenetics/dna_preparation/msre_overview. Дата обращения: 20.07.2024.
  60. Vaisvila R, Ponnaluri VK, Sun Z, et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 2021;31(7):1280–1289. EDN: NJJWWN doi: 10.1101/gr.266551.120

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».