The influence of model iterative reconstruction on the image quality in standard and low-dose computer tomography of the chest. Experimental study

Cover Page

Cite item

Full Text

Abstract

Background. One of the ways to reduce the radiation dose in CT is to the image reconstruction algorithms. The latest offer from CT scanner manufacturers is Model Iterative Reconstruction (MIR). Aims: to compare the quality of visualization of the structures of the chest organs and to prove the effectiveness of the low-dose protocol with iterative model reconstruction. Methods. A calibration phantom with a spatial resolution module and an anthropomorphic phantom of the upper body of an adult with nodules in the lungs were scanned using two CT scanners of different manufacturers. Two protocols were applied: the standard dose protocol (SDCT) with the algorithms of hybrid iterative reconstruction (HIR) of images and MIR and a low-dose protocol (LDCT) with the MIRalgorithm. The quality of the obtained images was evaluated by the following parameters: noise (SD), the contrast-to-noise ratio (CNR), spatial resolution and visualization of pulmonary nodules. The radiation dose was calculated according to the scanner data, the data of individual dosimeters placed on the anthropomorphic phantom, and using a dosimetric phantom. Results. The average SD was 11.5; 24.4 and 21.6; CNR 85.47; 40.6 and 45.6; spatial resolution 2 mm; 2 mm and 3 mm for SDCT with MIR, SDCT with HIR and LDCT with MIR respectively. Visualization of the pulmonary lesions remained excellent in all cases. The radiation dose in case of SDCT was 2.7, and in case of LDCT — 0.67 mSv. The dose reduction was confirmed by the dosimeter data. Similar results were obtained by repeating the experiment with a second scanner. Conclusions. The model iterative reconstruction application will allow reducing the irradiatin dose during CT scanning of the chest organs without deterioration of the visualization quality.

About the authors

Антон Yu. Silin

Clinical Hospital on Yauza; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Health Care Departmen

Email: silin@yamed.ru
ORCID iD: 0000-0003-4952-2347
SPIN-code: 4411-8745

Radiologist of the Highest Qualification Category, Junior Researcher

Russian Federation, Moscow

Ivan S. Gruzdev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Health Care Departmen

Author for correspondence.
Email: gruzdev_van@mail.ru
ORCID iD: 0000-0003-0781-9898
SPIN-code: 3350-0832

graduate student

Russian Federation, Moscow

Sergey P. Morozov

A.V. Vishnevsky National Medical Research Center of Surgery

Email: npcmr@zdrav.mos.ru
ORCID iD: 0000-0001-6545-6170
SPIN-code: 8542-1720

MD, PhD, Professor

Russian Federation, Moscow

References

  1. McCunney RJ, Li J. Radiation risks in lung cancer screening programs: a comparison with nuclear industry workers and atomic bomb survivors. Chest. 2014;145(3):618–624. doi: 10.1378/chest.13-1420.
  2. Mehta D, Thompson R, Morton T, et al. Iterative model reconstruction: simultaneously lowered computed tomography radiation dose and improved image quality. Med Phys Int J. 2013;2(1):147–155.
  3. Yan C, Xu J, Liang C, et al. Radiation dose reduction by using ct with iterative model reconstruction in patients with pulmonary invasive fungal infection. Radiology. 2018;288(1):285–292. doi: 10.1148/radiol.2018172107.
  4. Katsura M, Sato J, Akahane M, et al. Effects of pure and hybrid iterative reconstruction algorithms on high-resolution computed tomography in the evaluation of interstitial lung disease. Eur J Radiol. 2017;93:243–251. doi: 10.1016/j.ejrad.2017.06.003.
  5. Yanagawa M, Gyobu T, Leung A, et al. Ultra-low-dose CT of the lung: effect of iterative reconstruction techniques on image quality. Acad Radiol. 2014;21(6):695–703. doi: 10.1016/j.acra.2014.01.023.
  6. Kim H, Park CM, Chae HD, et al. Impact of radiation dose and iterative reconstruction on pulmonary nodule measurements at chest CT: a phantom study. Diagn Interv Radiol. 2015;21(6):459–465. doi: 10.5152/dir.2015.14541.
  7. Ju YH, Lee G, Lee JW, et al. Ultra-low-dose lung screening CT with model-based iterative reconstruction: an assessment of image quality and lesion conspicuity. Acta Radiol. 2018;59(5):553–559. doi: 10.1177/0284185117726099.
  8. Zhang M, Qi W, Sun Y, et al. Screening for lung cancer using sub-millisievert chest CT with iterative reconstruction algorithm: image quality and nodule detectability. Br J Radiol. 2018;91(1090):20170658. doi: 10.1259/bjr.20170658.
  9. Debray MP, Dauriat G, Khalil A, et al. Diagnostic accuracy of low-mA chest CT reconstructed with Model Based Iterative Reconstruction in the detection of early pleuro-pulmonary complications following a lung transplantation. Eur Radiol. 2016;26(9):3138–3146. doi: 10.1007/s00330-015-4126-0.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Laying phantoms and dosimeters: top view (A) and side (B)

Download (195KB)
3. Fig. 2. Computed tomographic images of an anthropomorphic phantom in the pulmonary window: A - model iterative reconstruction at a low radiation dose; B - standard computed tomography with model iterative reconstruction; B - standard computed tomography with hybrid iterative reconstruction.

Download (183KB)

Copyright (c) 2020 Silin А.Y., Gruzdev I.S., Morozov S.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».