Компьютерное моделирование в разработке вакцин против covid-19 на основе антигенов hla-системы

Обложка

Цитировать

Полный текст

Аннотация

Генетическая вариабельность популяции может объяснить различные индивидуальные иммунные реакции на вирус SARS-CoV-2. Использование технологий на основе анализа генома и протеома дает возможность разрабатывать вакцины путем оптимизации выбора антигенов-мишеней. Методология компьютерного моделирования предоставляет научному сообществу более полный список иммуногенных пептидов, включающий в себя ряд новых и перекрестно-реактивных кандидатов. Исследования, проводимые независимо друг от друга с различными подходами, дают высокую степень уверенности в воспроизводимости результатов. Бόльшая часть усилий по разработке вакцин и лекарств против SARS-CoV-2 направлена на гликопротеин шипа (белок S) — главный индуктор нейтрализующих антител. Несколько вакцин продемонстрировали эффективность в доклинических исследованиях и прошли клинические испытания по противодействию инфекции COVID-19. В обзоре представлен профиль предсказанных in silico[1] иммуногенных пептидов вируса SARS-CoV-2 для последующей функциональной валидации и разработки вакцин; освещаются текущие достижения в разработке субъединичных вакцин для борьбы с COVID-19 с учетом опыта, который был достигнут ранее с SARS-CoV и MERS-CoV. Методы иммуноинформатики сокращают время и затраты при разработке вакцин, которые вместе могут остановить эту новую вирусную инфекцию.

 

[1] Термин, обозначающий компьютерное моделирование (симуляцию) эксперимента, чаще биологического.

Об авторах

Дмитрий Александрович Вологжанин

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-код: 7922-7302

д.м.н.

Россия, 197706, Санкт-Петербург, г. Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург

Александр Сергеевич Голота

Городская больница № 40 Курортного административного района

Автор, ответственный за переписку.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870

к.м.н., доцент

Россия, 197706, Санкт-Петербург, г. Сестрорецк, ул. Борисова, д. 9, лит. Б

Татьяна Аскаровна Камилова

Городская больница № 40 Курортного административного района

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-код: 2922-4404

к.б.н.

Россия, 197706, Санкт-Петербург, г. Сестрорецк, ул. Борисова, д. 9, лит. Б

Ольга Вадимовна Шнейдер

Городская больница № 40 Курортного административного района

Email: o.shneider@gb40.ru
ORCID iD: 0000-0001-8341-2454
SPIN-код: 8405-1051

 к.м.н.

Россия, 197706, Санкт-Петербург, г. Сестрорецк, ул. Борисова, д. 9, лит. Б

Сергей Григорьевич Щербак

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-код: 1537-9822

д.м.н., профессор

Россия, 197706, Санкт-Петербург, г. Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург

Список литературы

  1. Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. 2020;1–15. doi: 10.1101/2020.02.07.937862
  2. Lu R, Zhao X, Li J, et al. Characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi: 10.1016/S0140-6736(20)30251-8
  3. Forouzesh M, Rahimi A, Valizadeh R, et al. Clinical display, diagnostics and genetic implication of novel Coronavirus (COVID-19) epidemic. Eur Rev Med Pharmacol Sci. 2020;24(8):4607–4615. doi: 10.26355/eurrev_202004_21047
  4. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microb Infect. 2020;9(1):382–385. doi: 10.1080/22221751.2020.1729069
  5. Самсонова М.В., Черняев А.Л., Михалева Л.М., и др. Патологическая анатомия легких при COVID-19. Атлас / под общей ред. О.В. Зайратьянца. Москва; Рязань, 2020. 52 с. [Samsonova MV, Chernyaev AL, Mikhaleva LM, et al. Vitiatam anatomia pulmo in COVID-19. Atlas. Ed. by O.V. Zairatyants. Moscow; Ryazan; 2020. 52 p. (In Russ).]
  6. Arabi YM, Murthy S, Webb S. COVID-19: a novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020;46(5):833–836. doi: 10.1007/s00134-020-05955-1
  7. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000.e3. doi: 10.1016/j.chom.2020.04.009
  8. Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for SARS-CoV-2. J Virol. 2020;94(13):e00510–e00520. doi: 10.1128/JVI.00510-20
  9. Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y. Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2. J Hum Genet. 2020;65(7):569–575.doi: 10.1038/s10038-020-0771-5
  10. Joshi A, Joshi BC, Mannan MA, Kaushik V. Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Inform Med Unlocked. 2020;100338. doi: 10.1016/j.imu.2020.100338
  11. Wang F, Hou H, Luo Y, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10):e137799. doi: 10.1172/jci.insight.137799
  12. Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020;19(7):102569. doi: 10.1016/j.autrev.2020.102569
  13. Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451–1454. doi: 10.1038/s41418-020-0530-3
  14. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102–108. doi: 10.1016/j.jpha.2020.03.001
  15. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. doi: 10.1056/NEJMoa2001191
  16. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi.: 10.1016/S2213-2600(20)30076-X
  17. Zhang S, Gan J, Chen BG, et al. Dynamics of peripheral immune cells and their HLA-G and receptor expressions in a patient suffering from critical COVID-19 pneumonia to convalescence. Clin Transl Immunology. 2020;9(5):e1128. doi: 10.1002/cti2.1128
  18. Wang W, Zhang W, Zhang J, et al. Distribution of HLA allele frequencies in 82 chinese individuals with Coronavirus Disease-2019 (COVID-19). HLA. 2020;96(2):194–196. doi: 10.1111/tan.13941
  19. Thevarajan I, Nguyen HO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case-report of non-severe COVID-10. Nat Med. 2020;26(4):453–455. doi: 10.1038/s41591-020-0819-2
  20. Jamilloux Y, Henryb T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567. doi: 10.1016/j.autrev.2020.102567
  21. Bhattacharya M, Sharma AR, Patra P, et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol. 2020;92(6):618–631. doi: 10.1002/jmv.25736
  22. Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of SARS-CoV-2. J Med Virol. 2020;92(5):495–500. doi: 10.1002/jmv.25698
  23. Santoni D, Vergni D. In the search of potential epitopes for Wuhan seafood market pneumonia virus using high order nullomers. J Immunol Methods. 2020;481–482:112787. doi: 10.1016/j.jim.2020.112787
  24. Klausen MS, Jespersen MC, Nielsen H, et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins. 2019;87(6):520–527. doi: 10.1002/prot.25674
  25. Enayatkhani M, Hasaniazad M, Faezi S, et al. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. J Biomol Struct Dyn. 2020;1–16. doi: 10.1080/07391102.2020.1756411
  26. Lee CH, Koohy H. In silico identification of vaccine targets for SARS-CoV-2. F1000Res. 2020;9:145. doi: 10.12688/f1000research.22507.2
  27. Sarkar B, Ullah A, Johora FT, et al. Immunoinformatics-guided designing of epitope-based subunit vaccine against the SARS Coronavirus-2 (SARS-CoV-2). Immunobiology. 2020;225(3):151955. doi: 10.1016/j.imbio.2020.151955
  28. Kalita P, Padhi AK, Zhang KY, Tripathi T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog. 2020;145:104236. doi: 10.1016/j.micpath.2020.104236
  29. Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit. 2020;26:e924700. doi: 10.12659/MSM.924700
  30. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis. EXCLI J. 2020;19:410–417. doi: 10.17179/excli2020-1167
  31. Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567–571. doi: 10.1038/s41586-020-2622-0
  32. Walsh EE, Frenck RW, Falsey AR, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–2450. doi: 10.1056/NEJMoa2027906
  33. Xia X. Domains and functions of spike protein in SARS-Cov-2 in the context of vaccine design. Viruses. 2021;13(1):109. doi: 10.3390/v13010109

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Поэтапная стратегия обратной вакцинологии при разработке вакцин [27].

Скачать (407KB)

© Вологжанин Д.А., Голота А.С., Камилова Т.А., Шнейдер О.В., Щербак С.Г., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».