The consolidation of fractures of the distal metaepiphysis of the radial bone in patients with diabetes mellitus: problems and solution approaches
- Authors: Tebeneva P.A.1, Makulova A.A.1
-
Affiliations:
- Ural State Medical University
- Issue: Vol 16, No 1 (2025)
- Pages: 92-103
- Section: Reviews
- URL: https://journal-vniispk.ru/clinpractice/article/view/295973
- DOI: https://doi.org/10.17816/clinpract676866
- ID: 295973
Cite item
Abstract
The fractures of the distal segment of the radial bone in diabetes mellitus patients is a problem which requires special attention, for the processes of healing in such patients are slower and are often accompanied by a number of complications. This article reviews the basic mechanisms affecting the consolidation of fractures in diabetes patients, including the metabolic disorders, the hyperglycemia, the micro- and macroangiopathy, the polyneuropathy and other systemic abnormalities. An analysis was carried out of the specific features of the anatomy of the distal metaepiphysis of the radial bone, which make it vulnerable to fractures that are difficult to heal. The research provides a detailed analysis of the factors inhibiting the regeneration of the bone tissue, such as the accumulation of glycation end-products, the increased activity of the osteoclasts, the decreased immune protection and the high risk of infectious complications. Also, the methods were highlighted that are used for prevention and treatment, including the control of glucose levels, the correction of vitamin D deficit, the repositioning of the fractured bone fragments and the reliable immobilization. The research emphasizes the necessity of combined approach to the treatment of fractures in diabetes patients, with taking into consideration both the orthopedic and the endocrinological aspects.
Full Text
##article.viewOnOriginalSite##About the authors
Polina A. Tebeneva
Ural State Medical University
Author for correspondence.
Email: tebenevapolli987654321@yandex.ru
ORCID iD: 0009-0004-7246-3271
SPIN-code: 2201-2242
Russian Federation, 3 Repina st, Yekaterinburg, 620028
Anastasia A. Makulova
Ural State Medical University
Email: makulova.n94@gmail.com
ORCID iD: 0000-0002-3778-7180
Russian Federation, 3 Repina st, Yekaterinburg, 620028
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet. 2024;404(10467):2077–2093. doi: 10.1016/S0140-6736(24)02317-1
- Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2019;84:45–55. doi: 10.1007/s00223-008-9195-5
- Wukich DK, Kline AJ. The management of ankle fractures in patients with diabetes. J Bone Joint Surg Am. 2008;90(7):1570–1578. doi: 10.2106/JBJS.G.01673
- Sarodnik C, Rasmussen NH, Bours SP, et al. The incidence of fractures at various sites in newly treated patients with type 2 diabetes mellitus. Bone Rep. 2022;17:101614. doi: 10.1016/j.bonr.2022.101614
- DeGeorge BR, van Houten HK, Mwangi R, et al. Outcomes and complications in the management of distal radial fractures in the elderly. J Bone Joint Surg Am. 2020;102(1):37–44. doi: 10.2106/JBJS.18.00561
- Aguado-Henche S, Morante-Martínez P, Cristóbal-Aguado S, Clemente de Arriba C. Study of human radius construction systematics: Evaluation by DXA in dry bone. Eur J Orthop Surg Traumatol. 2019;29(2):389–396. doi: 10.1007/s00590-018-2311-y
- Chung KC, Spilson SV. The frequency and epidemiology of hand and forearm fractures in the United States. J Hand Surg Am. 2001;26(5):908–915. doi: 10.1053/jhsu.2001.26322
- Pscherer S, Sandmann GH, Ehnert S, et al. Delayed fracture healing in diabetics with distal radius fractures. Acta Chir Orthop Traumatol Cech. 2019;82(4):268–273. doi: 10.1007/s43465-023-01049-4
- Hygum K, Starup-Linde J, Harsløf T, et al. Mechanisms in endocrinology: Diabetes mellitus, a state of low bone turnover. A systematic review and meta-analysis. Eur J Endocrinol. 2018;176(3):R137–R157. doi: 10.1530/EJE-16-0652
- Nypaver C, Bozentka DJ. Distal radius fracture and the distal radioulnar joint. Hand Clin. 2021;37(2):293–307.
- Mehta SP, Karagiannopoulos C, Pepin ME, et al. Distal radius fracture rehabilitation. J Orthop Sports Phys Ther. 2024;54(9):CPG1–CPG78. doi: 10.2519/jospt.2024.0301
- Papaioannou I, Pantazidou G, Kokkalis Z, et al. Systematic review: Are the elderly with diabetes mellitus type 2 prone to fragility fractures? Cureus. 2021;13(4):e14514. doi: 10.7759/cureus.12506
- Patel DS, Statuta SM, Ahmed N. Common fractures of the radius and ulna. Am Fam Physician. 2021;103(6):345–354.
- Chen Y, Chen X, Li Z, et al. Safety and efficacy of operative versus nonsurgical management of distal radius fractures in elderly patients: A systematic review and meta-analysis. J Hand Surg Am. 2018;41(3):404–413. doi: 10.1016/j.jhsa.2015.12.008
- Konarski W, Poboży T, Kotela A, et al. Does diabetes mellitus increase the risk of avascular osteonecrosis? A systematic review and meta-analysis. Int J Environ Res Public Health. 2022;19(22):15219. doi: 10.3390/ijerph192215219
- Malige A, Konopitski A, Nwachuku CO, Matullo KS. Distal radius fractures in diabetic patients: an analysis of surgical timing and other factors that affect complication rate. Hand (NY). 2022;17(4):764–771. doi: 10.1177/1558944720944262
- Ali D, Tencerova M, Figeac F, et al. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne). 2022;13:981487. doi: 10.3389/fendo.2022.981487
- Hygum K, Starup-Linde J, Langdahl BL. Diabetes and bone. Osteoporos Sarcopenia. 2019;5(2):29–37. doi: 10.1016/j.afos.2019.05.001
- Prasad TN, Arjunan D, Pal R, Bhadada SK. Diabetes and osteoporosis. Indian J Orthop. 2023;57(Suppl 1):209–217. doi: 10.1007/s43465-023-01049-4
- Holmberg AH, Yonel O, Nelson PM, et al. Risk factors for fractures in middle age. A prospective population-based study involving 33,000 men and women. Osteoporosis Int. 2019;17(7):1065–1077. doi: 10.1007/s00198-006-0137-7
- Zhao J, Liang G, Luo M, et al. Influence of type 2 diabetes microangiopathy on bone mineral density and bone metabolism: A meta-analysis. Heliyon. 2022;8(10):e11001. doi: 10.1016/j.heliyon.2022.e11001
- Ballato E, Deepika F, Prado M, et al. Circulating osteogenic progenitors and osteoclast precursors are associated with long-term glycemic control, sex steroids, and visceral adipose tissue in men with type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2022;13:936159. doi: 10.3389/fendo.2022.936159
- Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep. 2018;13(5):327–335. doi: 10.1007/s11914-015-0286-8
- Lu H, Kraut D, Gerstenfeld LC, et al. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2023;144:346–352. doi: 10.1210/en.2002-220072
- Saul D, Khosla S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence. Endocr Rev. 2022;43(6):984–1002. doi: 10.1210/endrev/bnac008
- Schwartz AV, Lane NE. Diabetes in America. 3rd ed. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018.
- Yamamoto M, Yamaguchi T, Sugimoto T. Increased fracture rate in patients with type 2 diabetes mellitus is independent of its bone mineral density. Clin Calcium. 2018;16(8):1308–1314.
- Galiero R, Caturano A, Vetrano E, et al. Peripheral neuropathy in diabetes mellitus: pathogenetic mechanisms and diagnostic options. Int J Mol Sci. 2023;24(4):3554. doi: 10.3390/ijms24043554
- Kayal RA, Tsatsas D, Bauer MA, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res. 2018;22(4):560–568. doi: 10.1359/jbmr.070115
- Cheng C, Shoback D. Mechanisms underlying normal fracture healing and risk factors for delayed healing. Curr Osteoporos Rep. 2019;17(1):36–47. doi: 10.1007/s11914-019-00501-5
- Tulipan J, Jones CM, Ilyas AM. The Effect of osteoporosis on healing of distal radius fragility fractures. Orthop Clin North Am. 2021;46(4):541–549. doi: 10.1016/j.ocl.2021.06.012
- Сandhi A, Liporace F, Azad V, et al. Diabetic fracture healing. Foot Ankle Clin. 2019;11(4):805–824. doi: 10.1016/j.fcl.2006.06.009
- Shah KN, Raskin J, Jones LK, Aaron RK. Pathophysiology and risk factors of osteonecrosis. Current update for the musculoskeletal system. Mad. 2019;8:201–209. doi: 10.1007/s12178-015-9277-8
- Roszer T. Inflammation as death or life signal in diabetic fracture healing. Inflamm Res. 2021;60(1):3–10. doi: 10.1007/s00011-010-0246-9
- Becerikli M, Reinkemeier F, Dadras M, et al. TGF-beta pathway inhibition as the therapeutic acceleration of diabetic bone regeneration. J Orthop Res. 2022;40(8):1810–1826. doi: 10.1002/jor.25212
- Singh RK, Yoon DS, Mandakhbayar N, et al. Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: Activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress. Biomaterials. 2022;288:121732. doi: 10.1016/j.biomaterials.2022.121732
- Fang J, Zhang X, Chen X, et al. The role of insulin-like growth factor-1 in bone remodeling: A review. Int J Biol Macromol. 2023;238:124125. doi: 10.1016/j.ijbiomac.2023.124125
- Raschke M, Wildemann B, Inden P, et al. Insulin-like growth factor-1 and transforming growth factor-beta1 accelerates osteotomy healing using polylactide-coated implants as a delivery system: A biomechanical and histological study in minipigs. Bone. 2022;30:144–151. doi: 10.1016/s8756-3282(01)00640-8.
- Alblowi J, Kayal RA, Siqueira M, et al. High levels of tumor necrosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol. 2018;175(4):1574–1585. doi: 10.2353/ajpath.2009.090148
- Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–390. doi: 10.1038/s41581-020-0278-5
- Rosenberg JL, Woolley W, Elnunu I, et al. Effect of non-enzymatic glycation on collagen nanoscale mechanisms in diabetic and age-related bone fragility. Biocell. 2023;47(7):1651–1659. doi: 10.32604/biocell.2023.028014
- Yamamoto M, Yamaguchi T, Yamauchi M, et al. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:1013–1019. doi: 10.1210/jc.2007-1270
- Cornish J, Callon KE, Reid IR. Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int. 2020;59(6):492–495. doi: 10.1007/BF00369216
- Papaioannou I, Pantazidou G, Kokkalis Z, et al. Vitamin D deficiency in elderly with diabetes mellitus type 2: A review. Cureus. 2021;13(1):e12506. doi: 10.7759/cureus.12506
- Oei L, Rivadeneira F, Zillikens MC, Oei EH. Diabetes, diabetic complications, and fracture risk. Curr Osteoporos Rep. 2019;13(2):106–115. doi: 10.1007/s11914-015-0260-5
- Liu X, Chen F, Liu L, Zhang Q. Prevalence of osteoporosis in patients with diabetes mellitus: A systematic review and meta-analysis of observational studies. BMC Endocr Disord. 2023;23(1):1. doi: 10.1186/s12902-022-01260-8
- Wang H, Ba Y, Xing Q, et al. Diabetes mellitus and the risk of fractures at specific sites: A meta-analysis. BMJ Open. 2019;9(1):e024067. doi: 10.1136/bmjopen-2018-024067
- Benfield T, Jensen JS, Nordestgaard BG. Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia. 2018;50(3):549–554. doi: 10.1007/s00125-006-0570-3
- Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 2021;26(3-4):259–265. doi: 10.1111/j.1574-695X.1999.tb01397.x.
- Holt RI, Cockram CS, Ma RC, Luk AO. Diabetes and infection: Review of the epidemiology, mechanisms and principles of treatment. Diabetologia. 2024;67(7):1168–1180. doi: 10.1007/s00125-024-06102-x
- Lecka-Czernik B. Bone loss in diabetes: Use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep. 2020;8(4):178–184. doi: 10.1007/s11914-010-0027-y
- Starup-Linde J, Eriksen SA, Lykkeboe S, et al. Biochemical markers of bone turnover in diabetes patients: A meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int. 2024;25(6):1697–1708. doi: 10.1007/s00198-014-2676-7
- Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. J Mech Behav Biomed Mater. 2023;143:105870. doi: 10.1016/j.jmbbm.2023.105870
- Lee RH, Sloane R, Pieper C, et al. Glycemic control and insulin treatment alter fracture risk in older man with type 2 diabetes mellitus. J Bone Miner Res. 2019;34(11):2045–2051. doi: 10.1002/jbmr.3826.
- Maiorino MI, Signoriello S, Maio A, et al. Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: A systematic review with meta-analysis of randomized controlled trials. Diabetes Care. 2020;43(5):1146–1156. doi: 10.2337/dc19-1459
- Lin MC, Sihota P, Kolibová SD, et al. Fracture characteristics of human cortical bone influenced by the duration of in vitro glycation. JBMR Plus. 2024;9(2):151. doi: 10.1093/jbmrpl/ziae151
- Costigan W, Thordarson DB, Debnath UK. Operative management of ankle fractures in patients with diabetes mellitus. Foot Ankle Int. 2022;28(1):32–37. doi: 10.3113/FAI.2007.0006
- Vukich DK. Diabetes and its negative impact on the results of orthopedic surgery. Justice Peace Ortop. 2018;6(3):331–339. doi: 10.5312/wjo.v6.i3.331
- Lichtman DM, Bindra RR, Boyer MI, et al. Treatment of distal radius fractures. J Am Acad Orthop Surg. 2020;18(3):180–189. doi: 10.5435/00124635-201003000-00007
- Sihota P, Yadav RN, Dhaliwal R, et al. Investigation of mechanical, material, and compositional determinants of human trabecular bone quality in type 2 diabetes. J Clin Endocrinol Metab. 2021;106(5):e2271–e2289. doi: 10.1210/clinem/dgab027
- Tanios M, Brickman B, Cage E, et al. Diabetes and impaired fracture healing: A narrative review of recent literature. Curr Osteoporos Rep. 2022;20(5):229–239. doi: 10.1007/s11914-022-00740-z
- Twito O, Borisovsky G, Ayzenfeld RH. The effect of glycemic control on rehabilitation outcomes of diabetic patients following hip fracture repair. J Diabetes Treat. 2018;10:154. doi: 10.29011/2574-7568.000054
Supplementary files
