The role of water-transporting aquaporins of the PIP and TIP subfamilies in plant development and adaptation to stress factors
- Authors: Danelia G.V.1, Emelyanov V.V.1, Shishova M.F.1
-
Affiliations:
- Saint Petersburg State University
- Issue: Vol 22, No 4 (2024)
- Pages: 343-368
- Section: Genetic basis of ecosystems evolution
- URL: https://journal-vniispk.ru/ecolgenet/article/view/287935
- DOI: https://doi.org/10.17816/ecogen637037
- ID: 287935
Cite item
Abstract
The comparative analyses of current knowledge of the diversity of aquaporins in angiosperms are presented in the review. Their structure, coding, and diversity of regulatory pathways are considered. Special attention is paid to aquaporins responsible for water transport. Data on the participation of various aquaporins in plant adaptation to abiotic factors causing hydration and dehydration are presented. The participation of aquaporins in the processes of plant growth and development from germination to seed formation are considered in sufficient detail. The data presented in the review indicate the main directions of further research important for elucidation of the mechanisms involved in regulation of aquaporins, mainly responsive for transmembrane water transport. The special significance of the studies at the omics level — transcriptomic and proteomic is noted. They will allow identifying the specificity of aquaporin isoforms involved in the development of the adaptive response or at different stages of plant development.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Georgy V. Danelia
Saint Petersburg State University
Email: georgdanelia@gmail.com
ORCID iD: 0009-0005-9330-4840
Russian Federation, Saint Petersburg
Vladislav V. Emelyanov
Saint Petersburg State University
Email: bootika@mail.ru
ORCID iD: 0000-0003-2323-5235
SPIN-code: 9460-1278
Cand. Sci. (Biology), Associate Professor
Russian Federation, Saint PetersburgMaria F. Shishova
Saint Petersburg State University
Author for correspondence.
Email: mshishova@mail.ru
ORCID iD: 0000-0003-3657-2986
SPIN-code: 7842-7611
Dr. Sci. (Biology), Professor
Russian Federation, Saint PetersburgReferences
- Krylov AV, Pohl P, Zeidel ML, Hill WG. Water permeability of asymmetric planar lipid bilayers: leaflets of different composition offer independent and additive resistances to permeation. J Gen Physiol. 2001;118(4):333–340. doi: 10.1085/jgp.118.4.333
- Mathai JC, Tristram-Nagle S, Nagle JF, Zeidel ML. Structural determinants of water permeability through the lipid membrane. J Gen Physiol. 2008;131(1):69–76. doi: 10.1085/jgp.200709848
- Shinoda W. Permeability across lipid membranes. Biochim Biophys Acta Biomembr. 2016;1858(10):2254–2265. doi: 10.1016/j.bbamem.2016.03.032
- Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol Res. 2018;51(1):4. doi: 10.1186/s40659-018-0152-0
- Inden T, Hoshino A, Otagaki S, et al. Genome-wide analysis of aquaporins in Japanese Morning Glory (Ipomoea nil). Plants. 2023;12(7):1511. doi: 10.3390/plants12071511
- Afzal Z, Howton TC, Sun Y, Mukhtar MS. The roles of aquaporins in plant stress responses. J Dev Biol. 2016;4(1):9. doi: 10.3390/jdb4010009
- Singh S, Bhatt V, Kumar V, et al. Evolutionary understanding of aquaporin transport system in the basal eudicot model species Aquilegia coerulea. Plants. 2020;9(6):799. doi: 10.3390/plants9060799
- Wood TE, Takebayashi N, Barker MS, et al. The frequency of polyploid speciation in vascular plants. PNAS USA. 2009;106(33): 13875–13879. doi: 10.1073/pnas.0811575106
- Stuessy T, Weiss-Schneeweiss H. What drives polyploidization in plants? New Phytol. 2019;223(4):1690–1692. doi: 10.1111/nph.15929
- Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. Plant Cell Environ. 2017;40(6):938–961. doi: 10.1111/pce.12844
- Sonah H, Deshmukh RK, Labbé C, Bélanger RR. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep. 2017;7(1):2771. doi: 10.1038/s41598-017-02877-9
- Su Y, Liu Z, Sun J, et al. Genome-wide identification of maize aquaporin and functional analysis during seed germination and seedling establishment. Front Plant Sci. 2022;13:831916. doi: 10.3389/fpls.2022.831916
- Obroucheva NV, Sin’kevich IA. Aquaporins and cell growth. Russ J Plant Physiol. 2010;57(2):153–165. doi: 10.1134/S1021443710020019
- Maurel C, Boursiac Y, Luu D-T, et al. Aquaporins in plants. Physiol Rev. 2015;95(4):1321–1358. doi: 10.1152/physrev.00008.2015
- Chaumont F, Tyerman SD, editors. Plant aquaporins: From transport to signaling. New York: Springer; 2017. 353 p. doi: 10.1007/978-3-319-49395-4
- Wang Y, Zhao Z, Liu F, et al. Versatile roles of aquaporins in plant growth and development. Int J Mol Sci. 2020;21(24):9485. doi: 10.3390/ijms21249485
- Koefoed-Johnsen V, Ussing HH. The contributions of diffusion and flow to the passage of D2O through living membranes: Effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953;28(1):60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x
- Macey RL, Farmer REL. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta Biomembr. 1970;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6
- Denker BM, Smith BL, Kuhajda FP, Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem. 1988;263(30):15634–15642. doi: 10.1016/s0021-9258(19)37635-5
- Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992;256(5055):385–387. doi: 10.1126/science.256.5055.385
- Fushimi K, Uchida S, Harat Y, et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993;361(6412):549–552. doi: 10.1038/361549a0
- Fortin MG, Morrison NA, Verma DPS. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res. 1987;15(2): 813–824. doi: 10.1093/nar/15.2.813
- Hussain A, Tanveer R, Mustafa G, et al. Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics. 2020;112(1):263–275. doi: 10.1016/j.ygeno.2019.02.005
- Rabeh K, Sallami A, Gaboun F, et al. Genome-wide analysis of aquaporin and their responses to abiotic stresses in plants: A systematic review and meta-analysis. Plant Stress. 2024;11:100362. doi: 10.1016/j.stress.2024.100362
- Lopez-Zaplana A, Nicolas-Espinosa J, Carvajal M, Bárzana G. Genome-wide analysis of the aquaporin genes in melon (Cucumis melo L.) Sci Rep. 2020;10(1):22240. doi: 10.1038/s41598-020-79250-w
- Møller IM, Rao RSP, Jiang Y, et al. Proteomic and bioinformatic profiling of transporters in higher plant mitochondria. Biomolecules. 2020;10(8):1190. doi: 10.3390/biom10081190
- Kudoyarova G, Veselov D, Yemelyanov V, Shishova M. The role of aquaporins in plant growth under conditions of oxygen deficiency. Int J Mol Sci. 2022;23(17):10159. doi: 10.3390/ijms231710159
- Lopez-Zaplana A, Bárzana G, Ding L, et al. Aquaporins involvement in the regulation of melon (Cucumis melo L.) fruit cracking under different nutrient (Ca, B and Zn) treatments. Environ Exp Bot. 2022;201:104981. doi: 10.1016/j.envexpbot.2022.104981
- Ishikawa F, Suga S, Uemura T, et al. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 2005;579(25): 5814–5820. doi: 10.1016/j.febslet.2005.09.076
- Lopez D, Bronner G, Brunel N, et al. Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot. 2012;63(5):2217–2230. doi: 10.1093/jxb/err404
- Luang S, Hrmova M. Structural basis of the permeation function of plant aquaporins. In: Chaumont F, Tyerman SD, editors. Plant aquaporins: From transport to signaling. New York: Springer; 2017. P. 1–28. doi: 10.1007/978-3-319-49395-4_1
- Noronha H, Agasse A, Martins AP, et al. The grape aquaporin VvSIP1 transports water across the ER membrane. J Exp Bot. 2014;65(4):981–993. doi: 10.1093/jxb/ert448
- Shivaraj SM, Deshmukh R, Sonah H, Bélanger RR. Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut. BMC Genom. 2019;20:222. doi: 10.1186/s12864-019-5606-4
- Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ. From genome to function: the Arabidopsis aquaporins. Genome Biol. 2001;3(1):research0001.1. doi: 10.1186/gb-2001-3-1-research0001
- Nicolas-Espinosa J, Carvajal M. Genome-wide identification and biological relevance of broccoli aquaporins. Plant Genome. 2022;15(4):e20262. doi: 10.1002/tpg2.20262
- Park W, Scheffler BE, Bauer PJ, Campbell BT. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2010;10:142. doi: 10.1186/1471-2229-10-142
- Gupta AB, Sankararamakrishnan R. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol. 2009;9:134. doi: 10.1186/1471-2229-9-134
- Zhang DY, Ali Z, Wang CB, et al. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One. 2013;8(2):e56312. doi: 10.1371/journal.pone.0056312
- Rajora N, Thakral V, Geetika, et al. Understanding aquaporins regulation and silicon uptake in carrot (Daucus carota). J Plant Biochem Biotechnol. 2023;32(1):51–62. doi: 10.1007/s13562-022-00780-7
- Sakurai J, Ishikawa F, Yamaguchi T, et al. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol. 2005;46(9):1568–1577. doi: 10.1093/pcp/pci172
- Hove RM, Ziemann M, Bhave M. Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS One. 2015;10(6): e0128025. doi: 10.1371/journal.pone.0128025
- Reddy PS, Bhadra Rao TSR, Sharma KK, Vadez V. Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene. 2015;1:18–28. doi: 10.1016/j.plgene.2014.12.002
- Pawłowicz I, Rapacz M, Perlikowski D, et al. Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet. 2017;58:421–435. doi: 10.1007/s13353-017-0403-8
- Lu Y, Jeffers R, Raju A, et al. Does night-time transpiration provide any benefit to wheat (Triticum aestivum L.) plants which are exposed to salt stress? Physiol Plant. 2023;175(1):e13839. doi: 10.1111/ppl.13839
- Jang JY, Kim DG, Kim YO, et al. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol. 2004;54(5):713–725. doi: 10.1023/b: plan.0000040900.61345.a6
- Lopez-Zaplana A, Martinez-Garcia N, Carvajal M, Bárzana G. Relationships between aquaporins gene expression and nutrient concentrations in melon plants (Cucumis melo L.) during typical abiotic stresses. Environ Exp Bot. 2022;195:104759. doi: 10.1016/j.envexpbot.2021.104759
- Solouki A, Berna-Sicilia JÁ, Martinez-Alonso A, et al. Onion plants (Allium cepa L.) react differently to salinity levels according to the regulation of aquaporins. Heliyon. 2023;9(3):e13815. doi: 10.1016/j.heliyon.2023.e13815
- Quiroga G, Erice G, Ding L, et al. The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. Plant Cell Environ. 2019;42(7):2274–2290. doi: 10.1111/pce.13551
- Nicolas-Espinosa J, Yepes-Molina L, Martinez-Bernal F, et al. Deciphering the effect of salinity and boron stress on broccoli plants reveals that membranes phytosterols and PIP aquaporins facilitate stress adaptation. Plant Sci. 2024;338:111923. doi: 10.1016/j.plantsci.2023.111923
- Verdoucq L, Rodrigues O, Martinière A, et al. Plant aquaporins on the move: Reversible phosphorylation, lateral motion and cycling. Curr Opin Plant Biol. 2014;22:101–107. doi: 10.1016/j.pbi.2014.09.011
- Li C, Wang W. Molecular biology of aquaporins. In: Yang B, editor. Aquaporins. Advances in experimental medicine and biology. Vol. 969. Dordrecht: Springer; 2017. P. 1–34. doi: 10.1007/978-94-024-1057-0_1
- Wu XN, Rodriguez CS, Pertl-Obermeyer H, et al. Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteom. 2013;12(10):2856–2873. doi: 10.1074/mcp.M113.029579
- Bellati J, Champeyroux C, Hem S, et al. Novel aquaporin regulatory mechanisms revealed by interactomics. Mol Cell Proteom. 2016;15(11):3473–3487. doi: 10.1074/mcp.M116.060087
- Fushimi K, Sasaki S, Marumo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem. 1997;272(23):14800–14804. doi: 10.1074/jbc.272.23.14800
- Javot H, Maurel C. The role of aquaporins in water uptake. Ann Bot. 2002;90(3):301–313. doi: 10.1093/aob/mcf199
- Przedpelska-Wasowicz EM, Wierzbicka M. Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells. Protoplasma. 2011;248(4):663–671. doi: 10.1007/s00709-010-0222-9
- Henzler T, Ye Q, Steudle E. Oxidative of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell Environ. 2004;27(9):1184–1195. doi: 10.1111/j.1365-3040.2004.01226.x
- Aroca R. Exogenous catalase and ascorbate modify the effects of abscisic acid (ABA) on root hydraulic properties in Phaseolus vulgaris L. plants. J Plant Growth Regul. 2006;25(1):10–17. doi: 10.1007/s00344-005-0075-1
- Luu D-T, Maurel C. Aquaporin trafficking in plant cells: an emerging membrane-protein model. Traffic. 2013;14(6):629–635. doi: 10.1111/tra.12062
- Sun Q, Liu X, Kitagawa Y, et al. Plant aquaporins: Their roles beyond water transport. Crop J. 2024;12(3):641–655. doi: 10.1016/j.cj.2024.04.005
- Yepes-Molina L, Bárzana G, Carvajal M. Controversial regulation of gene expression and protein transduction of aquaporins under drought and salinity stress. Plants. 2020;9(12):1662. doi: 10.3390/plants9121662
- Jackson MB, Davies WJ, Else M. Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Ann Bot. 1996;77(1):17–24. doi: 10.1006/anbo.1996.0003
- Törnroth-Horsefield S, Wang Y, Hedfalk K, et al. Structural mechanism of plant aquaporin gating. Nature. 2006;439(7077): 688–694. doi: 10.1038/nature04316
- Gitto A, Fricke W. Zinc treatment of hydroponically-grown barley (H. vulgare) plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression. Physiol Plant. 2018;164(2):176–190. doi: 10.1111/ppl.12697
- Burke S, Sadaune E, Rognon L, et al. A redundant hydraulic function of root hairs in barley plants grown in hydroponics. Funct Plant Biol. 2020;48(4):448–459. doi: 10.1071/fp20287
- Matsuo N, Nanjo Y, Tougou M, et al. Identification of putative aquaporin genes and their expression analysis under hypoxic conditions in soybean [Glycine max (L.) Merr.]. Plant Prod Sci. 2012;15(4):278–283. doi: 10.1626/pps.15.278
- Shivaraj SM, Deshmukh R, Bhat JA, et al. Understanding aquaporin transport system in eelgrass (Zostera marina L.), an aquatic plant species. Front Plant Sci. 2017;8:1334. doi: 10.3389/fpls.2017.01334
- Yanada K-i, Kondo K, Ino N, et al. Plasma membrane aquaporins function in moisture regulation during seed germination and leaf hydration in eelgrass. Aquat Bot. 2024;192:103760. doi: 10.1016/j.aquabot.2024.103760
- Cozza R, Pangaro T. Tissue expression pattern of two aquaporin-encoding genes in different organs of the seagrass Posidonia oceanica. Aquat Bot. 2009;91(2):117–121. doi: 10.1016/j.aquabot.2009.03.007
- Serra IA, Nicastro S, Mazzuca S, et al. Response to salt stress in seagrasses: PIP1;1 aquaporin antibody localization in Posidonia oceanica leaves. Aquat Bot. 2013;104:213–219. doi: 10.1016/j.aquabot.2011.05.008
- Hoai PTT, Tyerman SD, Schnell N, et al. Deciphering aquaporin regulation and roles in seed biology. J Exp Bot. 2020;71(6): 1763–1773. doi: 10.1093/jxb/erz555
- Obroucheva NV, Sinkevich IA, Lityagina SV, Novikova GV. Water relations in germinating seeds. Russ J Plant Physiol. 2017;64(4): 625–633. doi: 10.1134/s102144371703013x
- Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution. J Integr Plant Biol. 2019;61(5):541–563. doi: 10.1111/jipb.12762
- Liu H-Y, Yu X, Cui D-Y, et al. The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Res. 2007;17(7):638–649. doi: 10.1038/cr.2007.34
- Footitt S, Clewes R, Feeney M, et al. Aquaporins influence seed dormancy and germination in response to stress. Plant Cell Environ. 2019;42(8):2325–2339. doi: 10.1111/pce.13561
- Novikova GV, Tournaire-Roux C, Sin’kevich IA, et al. Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds. Plant Physiol Biochem. 2014;82:123–132. doi: 10.1016/j.plaphy.2014.05.014
- Hachez C, Moshelion M, Zelazny E, et al. Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol. 2006;62(1–2):305–323. doi: 10.1007/s11103-006-9022-1
- Sakurai J, Ahamed A, Murai M, et al. Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol. 2008;49(1):30–39. doi: 10.1093/pcp/pcm162
- Gambetta GA, Fei J, Rost TL, et al. Water uptake along the length of grapevine fine roots: Developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiol. 2013;163(3):1254–1265. doi: 10.1104/pp.113.221283
- Suga S, Murai M, Kuwagata T, Maeshima M. Differences in aquaporin levels among cell types of radish and measurement of osmotic water permeability of individual protoplasts. Plant Cell Physiol. 2003;44(3):277–286. doi: 10.1093/pcp/pcg032
- Knipfer T, Besse M, Verdeil J-L, Fricke W. Aquaporin-facilitated water uptake in barley (Hordeum vulgare L.) roots. J Exp Bot. 2011;62(12):4115–4126. doi: 10.1093/jxb/err075
- Javot H, Lauvergeat V, Santoni V, et al. Role of a single aquaporin isoform in root water uptake. Plant Cell. 2003;15(2):509–522. doi: 10.1105/tpc.008888
- Hejnowicz Z, Sievers A. Reversible closure of water channels in parenchymatic cells of sunflower hypocotyl depends on turgor status of the cells. J Plant Physiol. 1996;147(5):516–520. doi: 10.1016/s0176-1617(96)80040-x
- Suga S, Imagawa S, Maeshima M. Specificity of the accumulation of mRNAs and proteins of the plasma membrane and tonoplast aquaporins in radish organs. Planta. 2001;212(2):294–304. doi: 10.1007/s004250000396
- Suga S, Komatsu S, Maeshima M. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol. 2002;43(10):1229–1237. doi: 10.1093/pcp/pcf148
- Ludevid D, Höfte H, Himelblau E, Chrispeels MJ. The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol. 1992;100(4):1633–1639. doi: 10.1104/pp.100.4.1633
- Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ. Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell. 1996;8(4):587–599. doi: 10.2307/3870337
- Eisenbarth DA, Weig AR. Dynamics of aquaporins and water relations during hypocotyl elongation in Ricinus communis L. seedlings. J Exp Bot. 2005;56(417):1831–1842. doi: 10.1093/jxb/eri173
- Schuurmans JAMJ, van Dongen JT, Rutjens BPW, et al. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol Biol. 2003;53(5):655–667. doi: 10.1023/b: plan.0000019070.60954.77
- McGaughey SA, Osborn HL, Chen L, et al. Roles of aquaporins in Setaria viridis stem development and sugar storage. Front Plant Sci. 2016;7:1815. doi: 10.3389/fpls.2016.01815
- Muto Y, Segami S, Hayashi H, et al. Vacuolar proton pumps and aquaporins involved in rapid internode elongation of deepwater rice. Biosci Biotechnol Biochem. 2011;75(1):114–122. doi: 10.1271/bbb.100615
- Shivaraj SM, Deshmukh RK, Rai R, et al. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep. 2017;7(1):46137. doi: 10.1038/srep46137
- Besse M, Knipfer T, Miller AJ, et al. Developmental pattern of aquaporin expression in barley (Hordeum vulgare L.) leaves. J Exp Bot. 2011;62(12):4127–4142. doi: 10.1093/jxb/err175
- Fricke W, Knipfer T. Plant aquaporins and cell elongation. In: Chaumont F, Tyerman SD, editors. Plant aquaporins: From transport to signaling. New York: Springer; 2017. P. 107–131. doi: 10.1007/978-3-319-49395-4_5
- Schünmann PHD, Ougham HJ. Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: A tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol Biol. 1996;31(3):529–537. doi: 10.1007/bf00042226
- Wei W, Alexandersson E, Golldack D, et al. HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues. Plant Cell Physiol. 2007;48(8):1132–1147. doi: 10.1093/pcp/pcm083
- Barrieu F, Chaumont F, Chrispeels MJ. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol. 1998;117(4):1153–1163. doi: 10.1104/pp.117.4.1153
- Frangne N, Maeshima M, Schäffner AR, et al. Expression and distribution of a vacuolar aquaporin in young and mature leaf tissues of Brassica napus in relation to water fluxes. Planta. 2001;212(2):270–278. doi: 10.1007/s004250000390
- Yooyongwech S, Horigane AK, Yoshida M, et al. Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy. Physiol Plant. 2008;134(3):522–533. doi: 10.1111/j.1399-3054.2008.01143.x
- Azad AK, Sawa Y, Ishikawa T, Shibata H. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals. Biosci Biotechnol Biochem. 2004;68(5):1170–1174. doi: 10.1271/bbb.68.1170
- Nemoto K, Niinae T, Goto F, et al. Calcium-dependent protein kinase 16 phosphorylates and activates the aquaporin PIP2;2 to regulate reversible flower opening in Gentiana scabra. Plant Cell. 2022;34(7):2652–2670. doi: 10.1093/plcell/koac120
- Bots M, Feron R, Uehlein N, et al. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot. 2005;56(409):113–121. doi: 10.1093/jxb/eri009
- Soto G, Fox R, Ayub N, et al. TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J. 2010;64(6): 1038–1047. doi: 10.1111/j.1365-313x.2010.04395.x
- Wudick MM, Luu D-T, Tournaire-Roux C, et al. Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction. Plant Physiol. 2014;164(4):1697–1706. doi: 10.1104/pp.113.228700
- Zhou Y, Setz N, Niemietz C, et al. Aquaporins and unloading of phloem-imported water in coats of developing bean seeds. Plant Cell Environ. 2007;30(12):1566–1577. doi: 10.1111/j.1365-3040.2007.01732.x
- Ozga JA, van Huizen R, Reinecke DM. Hormone and seed-specific regulation of pea fruit growth. Plant Physiol. 2002;128(4): 1379–1389. doi: 10.1104/pp.010800
- Schlosser J, Olsson N, Weis M, et al. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma. 2008;232(3–4):255–265. doi: 10.1007/s00709-008-0280-9
- Fouquet R, Léon C, Ollat N, Barrieu F. Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep. 2008;27(9):1541–1550. doi: 10.1007/s00299-008-0566-1
- Shiota H, Sudoh T, Tanaka I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato. Plant Sci. 2006;171(2):277–285. doi: 10.1016/j.plantsci.2006.03.021
- O’Brien M, Bertrand C, Matton DP. Characterization of a fertilization-induced and developmentally regulated plasma-membrane aquaporin expressed in reproductive tissues, in the wild potato Solanum chacoense Bitt. Planta. 2002;215(3):485–493. doi: 10.1007/s00425-002-0770-0
- Smart LB, Vojdani F, Maeshima M, Wilkins TA. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol. 1998;116(4):1539–1549. doi: 10.1104/pp.116.4.1539
- Hu C-G, Hao H-J, Honda C, et al. Putative PIP1 genes isolated from apple: Expression analyses during fruit development and under osmotic stress. J Exp Bot. 2003;54(390):2193–2194. doi: 10.1093/jxb/erg238
- Lv J, CaoY, Tai R, et al. Comparative study of expression patterns of aquaporin (AQP) genes in apple fruits with contrasting ripening behavior. Sci Hortic. 2023;318:112133. doi: 10.1016/j.scienta.2023.112133
- Zhu Y-X, Yang L, Liu N, et al. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber. BMC Plant Biol. 2019;19:345. doi: 10.1186/s12870-019-1953-1
- Chinnasamy GP, Sundareswaran S, Subramanian KS, et al. Aquaporins and their implications on seeds: A brief review. J Appl Nat Sci. 2021;13(3):970–980. doi: 10.31018/jans.v13i3.2830
- Maurel C, Kado RT, Guern J, Chrispeels MJ. Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP. EMBO J. 1995;14(13):3028–3035. doi: 10.1002/j.1460-2075.1995.tb07305.x
- Hunter PR, Craddock CP, Di Benedetto S, et al. Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol. 2007;145(4):1371–1382. doi: 10.1104/pp.107.103945
- Gattolin S, Sorieul M, Frigerio L. Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant. 2011;4(1):180–189. doi: 10.1093/mp/ssq051
- Kirpichnikova А, Chen Т, Teplyakova S, Shishova M. Proton pump and plant cell elongation. Biol Commun. 2018;63(1):32–42. doi: 10.21638/spbu03.2018.105
- Kirpichnikova AA, Kudoyarova GR, Yemelyanov VV, Shishova MF. The peculiarities of cell elongation growth of cereal coleoptiles under normal and flooding conditions. Ecological genetics. 2023;21(4):401–417. EDN: QWDPWQ doi: 10.17816/ecogen623901
Supplementary files
