Polymorphism of microsatellite marker REMS1218 in rye Secale cereale L. specimens from the Peterhof genetic collection and the varietal population Grafinya
- Authors: Tsvetkova N.V.1, Zykin P.A.1, Andreeva E.A.1,2
-
Affiliations:
- Saint Petersburg State University
- Vavilov Institute of General Genetics
- Issue: Vol 22, No 4 (2024)
- Pages: 423-435
- Section: Methodology in ecological genetics
- URL: https://journal-vniispk.ru/ecolgenet/article/view/287940
- DOI: https://doi.org/10.17816/ecogen635523
- ID: 287940
Cite item
Abstract
BACKGROUND: Short stemness is an important trait for rye; most varieties of winter rye carry the dominant short stemness gene Ddw1. A simple way to assess the diversity of the chromosome region in which the Ddw1 gene is localized is to use the REMS1218 microsatellite marker.
AIM: The aim of the work is to study the polymorphism of the REMS1218 marker in six short-stemmed accessions from the Peterhof genetic collection of rye and rye plants of the Grafinya varietal population.
MATERIALS AND METHODS: Six accessions of winter rye homozygous for alleles of several genes for short stemness/dwarfism and a medium-tall varietal population of winter rye Grafinya were studied. The REMS1218 microsatellite marker polymorphism was studied using fragment analysis.
RESULTS: The 318 bp fragment of the REMS1218 marker is predominant in the short-stemmed accessions from the collection, regardless of the presence of the Ddw1 gene; significant polymorphism for the REMS1218 marker was shown in the varietal population Grafinya. Principal component analysis using measured vegetative traits and grain parameters of 79 plants of the varietal population Grafinya demonstrated the absence of clustering for the four dominant REMS1218 profile types for these components.
CONCLUSIONS: The microsatellite marker REMS1218 can be used to characterize individual plants of a varietal population, to separate heterogeneous populations into subgroups with a similar profile for subsequent analysis of the progeny of the selected families according to the selected traits (plant height, productivity).
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Natalia V. Tsvetkova
Saint Petersburg State University
Email: n.tswetkowa@spbu.ru
ORCID iD: 0000-0002-7353-1107
SPIN-code: 1687-5757
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgPavel A. Zykin
Saint Petersburg State University
Email: pavel.zykin@spbu.ru
ORCID iD: 0000-0003-1624-6163
SPIN-code: 2730-5890
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgElena A. Andreeva
Saint Petersburg State University; Vavilov Institute of General Genetics
Author for correspondence.
Email: e.a.andreeva@spbu.ru
ORCID iD: 0000-0002-9326-3170
SPIN-code: 7269-8240
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; MoscowReferences
- sfera.fm [Internet]. Rye is a strategic grain crop in ensuring Russia’s food security [cited 26 Aug 2024]. Available from: https://sfera.fm/articles/hlebopecheniya/rozh-strategicheskaya-zernovaya-kultura-v-obespechenii-prodovolstvennoi-bezopasnosti-rossii (In Russ.)
- Kobylianskii VD. Rye. Genetic bases of selection. Moscow: Kolos; 1982. (In Russ.)
- Philippot L, Hallin S. Towards food, feed and energy crops mitigating climate change. Trends Plant Sci. 2011;16(9):476–480. doi: 10.1016/j.tplants.2011.05.007
- Feyereisen GW, Camargo GGT, Baxter RE, et al. Cellulosic biofuel potential of a winter rye double crop across the U.S. corn–soybean belt. J Agron. 2013;105(3):631–642. doi: 10.2134/agronj2012.0282
- Plaschke J, Börner A, Xie DX, et al. RFLP mapping of genes affecting plant height and growth habit in rye. Theor Appl Genet. 1993;85(8):1049–1054. doi: 10.1007/BF00215046
- Plaschke J, Korzun V, Koebner RMD, Börner A. Mapping the GA3-insensitive dwarfing gene ct1 on chromosome 7 in rye. Plant Breeding. 1995;114(2):113–116. doi: 10.1111/j.1439-0523.1995.tb00773.x
- Malyshev S, Korzun V, Voylokov A, et al. Linkage mapping of mutant loci in rye (Secale cereale L.). Theor Appl Genet. 2001;103(1): 70–74. doi: 10.1007/s001220000504
- Braun EM, Tsvetkova N, Rotter B, et al. Gene expression profiling and fine mapping identifies a gibberellin 2-oxidase gene co-segregating with the dominant dwarfing gene Ddw1 in rye (Secale cereale L.). Front Plant Sci. 2019;10:857. doi: 10.3389/fpls.2019.00857
- Stojałowski S, Myśków B, Hanek M. Phenotypic effect and chromosomal localization of Ddw3, the dominant dwarfing gene in rye (Secale cereale L.). Euphytica. 2015;201:43–52. doi: 10.1007/s10681-014-1173-6
- Kantarek Z, Masojć P, Bienias A, Milczarski P. Identification of a novel, dominant dwarfing gene (Ddw4) and its effect on morphological traits of rye. PLoS One. 2018;13(6):e0199335. doi: 10.1371/journal.pone.0199335
- Kobylianskii VD. On the genetics of the dominant factor of short-straw rye. Soviet Genetics. 1972;8(1):12–17. EDN: WGSFAX (In Russ.)
- Kobylianskii VD, Solodukhina OV. Use of donors of valuable traits of plants in breeding of new varieties of winter rye. Achievements of science and technology in agro-industrial complex. 2015;29(7):7–12. EDN: UCPKFH
- Börner A, Melz G. Response of rye genotypes differing in plant height to exogenous gibberellic acid application. Arch Züchtungsforsch. 1988;(18):71–74.
- Korzun V, Börner A, Melz G. RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor Appl Genet. 1996;92(8):1073–1077. doi: 10.1007/BF00224051
- Catalog of the world collection of VIR. Iss. 757. Winter rye. Saint Petersburg: VIR; 2004. 47 p. (In Russ.)
- Catalog of the world collection of VIR. Iss. 844. Winter rye (donors and sources of valuable traits of winter rye in relation to breeding tasks). Saint Petersburg: VIR; 2017. 37 p. (In Russ.)
- Haardt RC, Schmiedchen B, Gordillo-Rodriguez A, Eifler J. Identifying variants associated with dwarfism via long read sequencing of the Ddw1 locus in winter rye. bioRxiv. 2023;537231. doi: 10.1101/2023.04.17.537231
- Tenhola-Roininen T, Tanhuanpää P. Tagging the dwarfing gene Ddw1 in a rye population derived from doubled haploid parents. Euphytica. 2010;172(3):303–312. doi: 10.1007/s10681-009-9982-8
- Kroupin P, Chernook A, Karlov G, et al. Effect of dwarfing gene Ddw1 on height and agronomic traits in spring Triticale in greenhouse and field experiments in a Non-Black Earth region of Russia. Plants. 2019;8(5):131. doi: 10.3390/plants8050131
- rp5.ru [Internet]. Lomonosov weather archive [cited 10 Jul 2024]. Available from: https://rp5.ru/Архив_погоды_в_Ломоносове (In Russ.)
- meteo.nw.ru [Internet]. Climate of Saint Petersburg and the Leningrad Region [cited 10 Jul 2024]. Available from: http://www.meteo.nw.ru/articles/index.php?id=2 (In Russ.)
- Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12(1):13–15.
- Mahone GS, Frisch M, Bauer E, et al. Detection of donor effects in a rye introgression population with genome-wide prediction. Plant Breed. 2015;134(4):406–415. doi: 10.1111/pbr.12283
- Rabanus-Wallace MT, Stein N, editors. The rye genome. Springer Cham; 2021. 236 p. doi: 10.1007/978-3-030-83383-1
- Kobyliansky VD, Solodukhina OV. The role of the Vavilov institute of plant industry in the initiation and development of new trends in winter rye breeding in Russia. Proceedings on applied botany, genetics and breeding. 2015;176(1):5–19. EDN: UADZWT doi: 10.30901/2227-8834-2015-1-5-19
- Hackauf B, Goldfisch MT, Musmann D, et al. Evaluation of the dominant dwarfing gene Ddw1 with respect to its use in hybrid rye breeding. In: Resistenz gegen biotischen Stress in der Pflanzenzüchtung: Resistenz gegen abiotischen Stress in der Pflanzenzüchtung. 63; 19–21 November 2012; Tagung. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs; Raumberg-Gumpenstein, Österreich; 2012. S. 41–42.
- Miedaner T, Haffke S, Siekmann D, et al. Dynamic quantitative trait loci (QTL) for plant height predict biomass yield in hybrid rye (Secale cereale L.). Biomass and Bioenergy. 2018;115:10–18. doi: 10.1016/j.biombioe.2018.04.001
- Chernook A, Kroupin P, Karlov G, et al. Effects of Rht-B1b and Ddw1 dwarfing genes in two connecting populations of spring Triticale under greenhouse experiment conditions. Agriculture. 2019;9(6):119. doi: 10.3390/agriculture9060119
- Chernook AG, Bazhenov MS, Kroupin PY, et al. Compensatory effect of the ScGrf3-2R gene in semi-dwarf spring Triticale (×Triticosecale Wittmack). Plants. 2022;11(22):3032. doi: 10.3390/plants11223032
Supplementary files
