Gut microbiota of healthy and saprolegniosis-affected whitefish (Coregonus nasus) producers in aquaculture
- Authors: Vylka M.M.1, Lyutikov A.A.1, Dyakova S.A.1, Karlov D.S.2, Zhukova A.A.1,3, Golotin V.A.1
-
Affiliations:
- Russian Federal Research Institute of Fisheries and Oceanography
- All-Russian Research Institute of Agricultural Microbiology
- Herzen State Pedagogical University of Russia
- Issue: Vol 23, No 3 (2025)
- Pages: 225-234
- Section: Ecosystems metagenomics
- URL: https://journal-vniispk.ru/ecolgenet/article/view/361848
- DOI: https://doi.org/10.17816/ecogen679052
- EDN: https://elibrary.ru/PWKCXL
- ID: 361848
Cite item
Abstract
Background: The gut microbiota is one of the main factor influencing the immunity of animals, including fish. Understanding the taxonomic and quantitative composition of the microbiota may hold the key to enhance fish immunity against bacterial and fungal infections in aquaculture that potentially could optimize fish farm management.
Aim: The aim of this work is to determine the taxonomic composition differences of the gut microbiome between healthy and Saprolegnia-affected breeders of broad whitefish (Coregonus nasus, Pallas, 1776) under industrial farming conditions using high-throughput sequencing.
Methods: The gut microbiota composition was analyzed using NGS sequencing and the methods of bioinformatics. Hematological profiling was performed using standard microscopy-based techniques.
Results: Preliminary data from high-throughput molecular genetic screening of the gut microbiota diversity in healthy and Saprolegnia-affected C. nasus individuals during the spawning period are presented. The hematological profile reliably distinguishes clinical differences between healthy fish and those infected with Saprolegnia. Differences in the taxonomic and quantitative composition of the gut microbiomes in C. nasus has been shown.
Conclusion: Fish with the clinical signs of saprolegniosis showed a dominance of the phylum Proteobacteria (on average of 45.3%). There were comparable propotions (26.67–30.27%) of Proteobacteria, Firmicutes, and Actinobacteriota observed in healthy fish.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Maxim M. Vylka
Russian Federal Research Institute of Fisheries and Oceanography
Email: vylka.maxim@yandex.ru
ORCID iD: 0000-0001-7583-864X
SPIN-code: 5468-2834
Saint Petersburg branch
Russian Federation, 26 Makarova emb., Saint Petersburg, 199053Anatoliy A. Lyutikov
Russian Federal Research Institute of Fisheries and Oceanography
Email: tokmo@mail.ru
ORCID iD: 0000-0003-0418-8218
SPIN-code: 9187-6075
Cand. Sci. (Biology), Saint Petersburg branch
Russian Federation, 26 Makarova emb., Saint Petersburg, 199053Svetlana A. Dyakova
Russian Federal Research Institute of Fisheries and Oceanography
Email: dyakova@niorh.vniro.ru
ORCID iD: 0000-0001-9970-403X
SPIN-code: 4202-4471
Cand. Sci. (Biology), Saint Petersburg branch
Russian Federation, 26 Makarova emb., Saint Petersburg, 199053Denis S. Karlov
All-Russian Research Institute of Agricultural Microbiology
Email: ds.karlov@arriam.ru
ORCID iD: 0000-0002-9030-8820
SPIN-code: 8355-8091
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgAlina A. Zhukova
Russian Federal Research Institute of Fisheries and Oceanography; Herzen State Pedagogical University of Russia
Email: gatteriyagreen@gmail.com
SPIN-code: 6849-0483
Cand. Sci. (Biology), Saint Petersburg branch
Russian Federation, 26 Makarova emb., Saint Petersburg, 199053; Saint PetersburgVasily A. Golotin
Russian Federal Research Institute of Fisheries and Oceanography
Author for correspondence.
Email: golotin@bk.ru
ORCID iD: 0000-0003-0385-2463
SPIN-code: 7198-3170
Cand. Sci. (Biology), Saint Petersburg branch
Russian Federation, 26 Makarova emb., Saint Petersburg, 199053References
- Bene C, Arthur R, Norbury H, et al. Contribution of fisheries and aquaculture to food security and poverty reduction: Assessing the current evidence. World Dev. 2016;79:177–196. doi: 10.1016/j.worlddev.2015.11.007
- Campbell JH, Dixon B, Whitehouse LM. The intersection of stress, sex and immunity in fishes. Immunogenetics. 2021;73(1):111–129. doi: 10.1007/s00251-020-01194-2
- Thakuria D, Khangembam VC, Pant V, et al. Anti-oomycete Activity of chlorhexidine gluconate: Molecular docking and in vitro studies. Front Vet Sci. 2022;(9):909570. doi: 10.3389/fvets.2022.909570
- Amillano-Cisneros JM, Hernández-Rosas PT, Gomez-Gil B, et al. Loss of gut microbial diversity in the cultured, agastric fish, Mexican pike silverside (Chirostoma estor: Atherinopsidae). PeerJ. 2022;7(10):e13052. doi: 10.7717/peerj.13052
- Borges N, Keller-Costa T, Sanches-Fernandes GMM, et al. Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annu Rev Anim Biosci. 2021;9:423–452. doi: 10.1146/annurev-animal-062920-113114
- Kostyunichev VV, Knyazeva LM, Shumilina AK. Methodological recommendations for growing and forming broodstocks of whitefish (peled, chir, muksun) in industrial conditions on artificial feeds. In: Proceeding of the methodological recommendations for industrial cultivation of whitefish for reproduction and commercial aquaculture. Saint Petersburg: GosNIORKh; 2012. P. 103–131. (In Russ.)
- Bates ST, Berg-Lyons D, Caporaso JG, et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2010;5(5):908–917. doi: 10.1038/ismej.2010.171
- Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869
- McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217
- Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. The R Journal. 2016;8(1):352–359. doi: 10.32614/RJ-2016-025
- Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–D596. doi: 10.1093/nar/gks1219
- Caporaso GJ, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303
- Mikodina EV, Sedova MA, Pyanova SV, et al. Guidelines for the use of the anesthetic «clove oil» in aquaculture. In: Aquaculture. Iss. 6. Moscow: VNIRO Publishing House; 2011. 58 p. ISBN: 978-5-85382-429-4 (In Russ.)
- Golovina NA, Romanova NN. Laboratory practical training on fish physiology. Saint Petersburg: Lan; 2019. 136 p. (In Russ.)
- Kotlyar OA. «Methods of fisheries research» — on a comprehensive study of commercial fish populations. Rybnoe: ASTU; 2004. 180 p. (In Russ.)
- Shabir U, Dar JS, Bhat AH, et al. The hidden world of fish fungal pathogens: molecular identification and phylogenetic analysis in common carp, Cyprinus carpio. Arch Microbiol. 2023;205(9):311. doi: 10.1007/s00203-023-03651-4
- Saha H, Pal AK, Sahu NP, et al. Effects of fluconazole based medicated feed on haemato-immunological responses and resistance of Labeo rohita against Saprolegnia parasitica. Fish Shellfish Immunol. 2017;71:346–352. doi: 10.1016/j.fsi.2017.09.073
- Ostroumova IN, Kostiunichev VN, Lyutikov AA, et al. The effect of increased temperature on physiological state of whitefish cultivated in aquaculture. Fisheries. 2022;(1):69–74. doi: 10.37663/0131-6184-2022-1-69-74 EDN: OGKGVC
- Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):915–1920. doi: 10.1126/science.1104816
- Kim YS, Milner JA. Dietary modulation of colon cancer risk. J Nutr. 2007;137(11):2576–2579. doi: 10.1093/jn/137.11.2576S
- Smith CJ, Rocha ER, Paster BJ. The medically important Bacteroides spp. in health and disease. In: Dworkin M, Falkow S, Rosenberg E, et al. The prokaryotes. Vol. 7. New York: Springer; 2006. P. 381–427. doi: 10.1007/0-387-30747-8_14
- Kelly D, Yang L, Pei Z. Gut microbiota, fusobacteria, and colorectal cancer. Diseases. 2018;6(4):109. doi: 10.3390/diseases6040109
- Bel’kova NL, Denikina NN, Dzyuba EV. Study of the microbiome of the intestine of the Comephorus Dybowski korotneff, 1904. Biology Bulletin. 2015;(5):544–551. doi: 10.7868/S0002332915050033
Supplementary files





