Effect of Rhizophagus irregularis inoculation on aquaporin gene expression in the roots of Medicago lupulina in drought conditions
- Authors: Kryukov A.A.1, Kudriashova T.R.1, Belyaeva A.I.1, Gorenkova A.I.1, Yurkov A.P.1
-
Affiliations:
- All-Russia Research Institute for Agricultural Microbiology
- Issue: Vol 23, No 3 (2025)
- Pages: 263-275
- Section: Methodology in ecological genetics
- URL: https://journal-vniispk.ru/ecolgenet/article/view/361851
- DOI: https://doi.org/10.17816/ecogen643544
- EDN: https://elibrary.ru/RXIZUA
- ID: 361851
Cite item
Abstract
Background: Most terrestrial plants form a symbiosis with arbuscular mycorrhizal fungi. Arbuscular mycorrhiza significantly enhances plant growth and their adaptation to biotic and abiotic stress factors. Arbuscular mycorrhizal fungi help plant uptake and improve the water nutrition of host plant. At the same time, the regulation and transport of water in plants is largely determined by the aquaporins activity. The specificity of gene expression of these transporters in different plant species and in different tissues has not been fully studied.
Aim: To evaluate the effect of mycorrhization of black medic by arbuscular mycorrhizal fungus on the expression of aquaporin genes in the roots under drought conditions at the early and late stages of symbiosis development.
Methods: Medicago lupulina MlS-1 line, characterized by high response to mycorrhization, was selected by the authors and was used in this study. The effective Rhizophagus irregularis RCAM00320 strain was used for mycorrhization. The plants were watered daily by 0.6 volumes of saturated water content. But during one week before the results were recorded, water scarcity conditions were created, 0.4 volumes of saturated water content. The plants were counted on the 24th and 48th days after sowing and inoculation. Total RNA from plant roots was isolated using the trizole method with modifications. Thirty-three aquaporin genes were selected to analyze the expression levels. Changes in gene expression were assessed using the real-time polymerase chain reaction method.
Results: It was shown the key genes involved in the mechanism of adaptation of mycorrhizal plants to drought may be NIP and TIP aquaporin genes, namely: MlNIP1;2, MlNIP1;3, MlNIP1;5, MlNIP4;1, MlNIP4;2 genes (mainly at the stage of the second leaf development) and MlTIP1;1, MlTIP1;4, MlTIP2;1, MlTIP2;2, MlTIP2;3, MlTIP3;1, MlTIP4;1, MlTIP5;1 genes (mainly at the flowering stage) in plant-microbial system “M. lupulina + R. irregularis”. The study used previously obtained data on the M. lupulina transcriptome to select target genes.
Conclusion: The genes involved in the development of effective symbiosis of plants with arbuscular mycorrhizal fungi in conditions of drought were identified. New information about the mechanisms of effective symbiosis formation is of practical importance for the development of highly productive plant-microbial systems, which will allow the transition from intensive agricultural technologies to biological agriculture with the production of environmentally safe products.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Alexey A. Kryukov
All-Russia Research Institute for Agricultural Microbiology
Email: aa.krukov@arriam.ru
ORCID iD: 0000-0002-8715-6723
SPIN-code: 4685-2723
Cand. Sci. (Biology)
Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608Tatiana R. Kudriashova
All-Russia Research Institute for Agricultural Microbiology
Email: t.kudryashova@arriam.ru
ORCID iD: 0000-0001-5120-7229
SPIN-code: 6716-9431
Cand. Sci. (Biology)
Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608Angelina I. Belyaeva
All-Russia Research Institute for Agricultural Microbiology
Email: angelkapustnikova@yandex.ru
ORCID iD: 0009-0003-7535-9018
Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608
Anastasia I. Gorenkova
All-Russia Research Institute for Agricultural Microbiology
Email: nastya.gorenkova.2016@mail.ru
SPIN-code: 3888-9050
Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608
Andrey P. Yurkov
All-Russia Research Institute for Agricultural Microbiology
Author for correspondence.
Email: ap.yurkov@arriam.ru
ORCID iD: 0000-0002-2231-6466
SPIN-code: 9909-4280
Cand. Sci. (Biology)
Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608References
- Mammadov J, Buyyarapu R, Guttikonda S, et al. Wild relatives of maize, rice, cotton, and soybean: Treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci. 2018;9:886. doi: 10.3389/fpls.2018.00886
- Luo Y, Ma L, Du W, et al. Identification and characterization of salt- and drought-responsive AQP family genes in Medicago sativa L. Int J Mol Sci. 2022;23(6):3342. doi: 10.3390/ijms23063342
- Bárzana G, Aroca R, Bienert GP, et al. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. MPMI. 2014;27(4):349–363. doi: 10.1094/MPMI-09-13-0268-R
- Maurel C, Boursiac Y, Luu D-T, et al. Aquaporins in plants. Physiol Rev. 2015;95(4):1321–1358. doi: 10.1152/physrev.00008.2015
- Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol Res. 2018;51(1):4. doi: 10.1186/s40659-018-0152-0
- Zhou X, Yi D, Ma L, Wang X. Genome-wide analysis and expression of the aquaporin gene family in Avena sativa L. Front Plant Sci. 2024;14:1305299. doi: 10.3389/fpls.2023.1305299
- Laloux T, Junqueira B, Maistriaux L, et al. Plant and mammal aquaporins: Same but different. Int J Mol Sci. 2018;19(2):521. doi: 10.3390/ijms19020521
- Danielson JÅH, Johanson U. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol. 2008;8(1):45. doi: 10.1186/1471-2229-8-45
- Abascal F, Irisarri I, Zardoya R. Diversity and evolution of membrane intrinsic proteins. Biochimica et Biophysica Acta (BBA) — General Subjects. 2014;1840(5):1468–1481. doi: 10.1016/j.bbagen.2013.12.001
- Yaneff A, Sigaut L, Marquez M, et al. Heteromerization of PIP aquaporins affects their intrinsic permeability. PNAS USA. 2014;111(1):231–236. doi: 10.1073/pnas.1316537111
- Kaldenhoff R, Fischer M. Functional aquaporin diversity in plants. Biochimica et Biophysica Acta (BBA) — Biomembranes. 2006;1758(8):1134–1141. doi: 10.1016/j.bbamem.2006.03.012
- Maurel C, Verdoucq L, Luu D-T, Santoni V. Plant Aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008;59(1):595–624. doi: 10.1146/annurev.arplant.59.032607.092734
- Johnson KD, Höfte H, Chrispeels MJ. An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GIpF). Plant Cell. 1990;2(6):525–532. doi: 10.1105/tpc.2.6.525
- Lopez-Zaplana A, Bárzana G, Ding L, et al. Aquaporins involvement in the regulation of melon (Cucumis melo L.) fruit cracking under different nutrient (Ca, B and Zn) treatments. Environ Exp Bot. 2022;201:104981. doi: 10.1016/j.envexpbot.2022.104981
- Loqué D, Ludewig U, Yuan L, Von Wirén N. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol. 2005;137(2):671–680. doi: 10.1104/pp.104.051268
- Fleurat-Lessard P, Michonneau P, Maeshima M, et al. The distribution of aquaporin subtypes (PIP1, PIP2 and γ-TIP) is tissue dependent in soybean (Glycine max) root nodules. Ann Bot. 2005;96(3):457–460. doi: 10.1093/aob/mci195
- Fortin MG, Morrison NA, Verma DPS. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res. 1987;15(2):813–824. doi: 10.1093/nar/15.2.813
- Kruse E, Uehlein N, Kaldenhoff R. The aquaporins. Genome Biol. 2006;7(2):206. doi: 10.1186/gb-2006-7-2-206
- Pommerrenig B, Diehn TA, Bienert GP. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci. 2015;238:212–227. doi: 10.1016/j.plantsci.2015.06.002
- Mizutani M, Watanabe S, Nakagawa T, Maeshima M. Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol. 2006;47(10):1420–1426. doi: 10.1093/pcp/pcl004
- Ma JF, Tamai K, Yamaji N, et al. A silicon transporter in rice. Nature. 2006;440(7084):688–691. doi: 10.1038/nature04590
- Lopez D, Amira MB, Brown D, et al. The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. Plant Mol Biol. 2016;91(4–5):375–396. doi: 10.1007/s11103-016-0462-y
- Hussain A, Tanveer R, Mustafa G, et al. Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics. 2020;112(1):263–275. doi: 10.1016/j.ygeno.2019.02.005
- Ishikawa F, Suga S, Uemura T, et al. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 2005;579(25):5814–5820. doi: 10.1016/j.febslet.2005.09.076
- Noronha H, Araújo D, Conde C, et al. The grapevine uncharacterized intrinsic protein 1 (VvXIP1) is regulated by drought stress and transports glycerol, hydrogen peroxide, heavy metals but not water. PLoS ONE. 2016;11(8): e0160976. doi: 10.1371/journal.pone.0160976
- Jia Y, Liu X. Polyploidization and pseudogenization in allotetraploid frog Xenopus laevis promote the evolution of aquaporin family in higher vertebrates. BMC Genom. 2020;21(1):525. doi: 10.1186/s12864-020-06942-y
- Qadir M, Hussain A, Iqbal A, et al. Microbial utilization to nurture robust agroecosystems for food security. Agronomy. 2024;14(9):1891. doi: 10.3390/agronomy14091891
- Yurkov AP, Kryukov AA, Gorbunova AO, et al. Diversity of arbuscular mycorrhizal fungi in distinct ecosystems of the North Caucasus, a temperate biodiversity hotspot. J Fungi. 2023;10(1):11. doi: 10.3390/jof10010011
- Yurkov AP, Jacobi LM, Gapeeva NE, et al. Development of arbuscular mycorrhiza in highly responsive and mycotrophic host plant–black medick (Medicago lupulina L.). Russian Journal of Developmental Biology. 2015;46(5):263–275. doi: 10.1134/S1062360415050082
- Yurkov A, Kryukov A, Gorbunova A, et al. AM-induced alteration in the expression of genes, encoding phosphorus transporters and enzymes of carbohydrate metabolism in Medicago lupulina. Plants. 2020;9(4):486. doi: 10.3390/plants9040486
- Rusak TI, Shkutov EN. Stable wilting humidity on old arable peat soils of polesye. Land reclamation. 2008;(2):154–162. EDN: VDFKSR
- Min X, Wu H, Zhang Z, et al. Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. J Plant Biochem Biotechnol. 2019;28(3):320–335. doi: 10.1007/s13562-018-0484-4
- MacRae E. Extraction of plant RNA. In: Hilario E, Mackay J, editors. Protocols for nucleic acid analysis by nonradioactive probes. Methods in Molecular Biology. Vol. 353. Humana Press; 2007. P. 15–24. doi: 10.1385/1-59745-229-7:15
- Yurkov AP, Puzanskiy RK, Avdeeva GS, et al. Mycorrhiza-induced alterations in metabolome of Medicago lupulina leaves during symbiosis development. Plants. 2021;10(11):2506. doi: 10.3390/plants10112506
- Martynenko E, Arkhipova T, Akhiyarova G, et al. Effects of a Pseudomonas strain on the lipid transfer proteins, appoplast barriers and activity of aquaporins associated with hydraulic conductance of pea plants. Membranes. 2023;13(2):208. doi: 10.3390/membranes13020208
- Ding M, Li J, Fan X, et al. Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Curr Genet. 2018;64(5):1057–1069. doi: 10.1007/s00294-018-0818-8
- Li G, Chen T, Zhang Z, et al. Roles of aquaporins in plant-pathogen interaction. Plants. 2020;9(9):1134. doi: 10.3390/plants9091134
- Spatafora JW, Chang Y, Benny GL, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028–1046. doi: 10.3852/16-042
- Ni Y, Bao H, Zou R, et al. Aquaporin ZmPIP2;4 promotes tolerance to drought during arbuscular mycorrhizal fungi symbiosis. Plant Soil. 2024;508:1–20. doi: 10.1007/s11104-024-06778-5
- Asadollahi M, Iranbakhsh A, Ahmadvand R, et al. Synergetic effect of water deficit and arbuscular mycorrhizal symbiosis on the expression of aquaporins in wheat (Triticum aestivum L.) roots: insights from NGS RNA-sequencing. Physiol Mol Biol Plants. 2023;29(2):195–208. doi: 10.1007/s12298-023-01285-w
- Kakouridis A, Hagen JA, Kan MP, et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist. 2022;236(1):210–221. doi: 10.1111/nph.18281
- Mashini AG, Oakley CA, Grossman AR, et al. Immunolocalization of metabolite transporter proteins in a model cnidarian-dinoflagellate symbiosis. Appl Environ Microbiol. 2022;88(12):e00412–22. doi: 10.1128/aem.00412-22
- Wang D, Ni Y, Xie K, et al. Aquaporin ZmTIP2;3 promotes drought resistance of maize through symbiosis with arbuscular mycorrhizal fungi. Int J Mol Sci. 2024;25(8):4205. doi: 10.3390/ijms25084205
Supplementary files



