🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Effect of Rhizophagus irregularis inoculation on aquaporin gene expression in the roots of Medicago lupulina in drought conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: Most terrestrial plants form a symbiosis with arbuscular mycorrhizal fungi. Arbuscular mycorrhiza significantly enhances plant growth and their adaptation to biotic and abiotic stress factors. Arbuscular mycorrhizal fungi help plant uptake and improve the water nutrition of host plant. At the same time, the regulation and transport of water in plants is largely determined by the aquaporins activity. The specificity of gene expression of these transporters in different plant species and in different tissues has not been fully studied.

Aim: To evaluate the effect of mycorrhization of black medic by arbuscular mycorrhizal fungus on the expression of aquaporin genes in the roots under drought conditions at the early and late stages of symbiosis development.

Methods: Medicago lupulina MlS-1 line, characterized by high response to mycorrhization, was selected by the authors and was used in this study. The effective Rhizophagus irregularis RCAM00320 strain was used for mycorrhization. The plants were watered daily by 0.6 volumes of saturated water content. But during one week before the results were recorded, water scarcity conditions were created, 0.4 volumes of saturated water content. The plants were counted on the 24th and 48th days after sowing and inoculation. Total RNA from plant roots was isolated using the trizole method with modifications. Thirty-three aquaporin genes were selected to analyze the expression levels. Changes in gene expression were assessed using the real-time polymerase chain reaction method.

Results: It was shown the key genes involved in the mechanism of adaptation of mycorrhizal plants to drought may be NIP and TIP aquaporin genes, namely: MlNIP1;2, MlNIP1;3, MlNIP1;5, MlNIP4;1, MlNIP4;2 genes (mainly at the stage of the second leaf development) and MlTIP1;1, MlTIP1;4, MlTIP2;1, MlTIP2;2, MlTIP2;3, MlTIP3;1, MlTIP4;1, MlTIP5;1 genes (mainly at the flowering stage) in plant-microbial system “M. lupulina + R. irregularis”. The study used previously obtained data on the M. lupulina transcriptome to select target genes.

Conclusion: The genes involved in the development of effective symbiosis of plants with arbuscular mycorrhizal fungi in conditions of drought were identified. New information about the mechanisms of effective symbiosis formation is of practical importance for the development of highly productive plant-microbial systems, which will allow the transition from intensive agricultural technologies to biological agriculture with the production of environmentally safe products.

About the authors

Alexey A. Kryukov

All-Russia Research Institute for Agricultural Microbiology

Email: aa.krukov@arriam.ru
ORCID iD: 0000-0002-8715-6723
SPIN-code: 4685-2723

Cand. Sci. (Biology)

Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608

Tatiana R. Kudriashova

All-Russia Research Institute for Agricultural Microbiology

Email: t.kudryashova@arriam.ru
ORCID iD: 0000-0001-5120-7229
SPIN-code: 6716-9431

Cand. Sci. (Biology)

Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608

Angelina I. Belyaeva

All-Russia Research Institute for Agricultural Microbiology

Email: angelkapustnikova@yandex.ru
ORCID iD: 0009-0003-7535-9018
Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608

Anastasia I. Gorenkova

All-Russia Research Institute for Agricultural Microbiology

Email: nastya.gorenkova.2016@mail.ru
SPIN-code: 3888-9050
Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608

Andrey P. Yurkov

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: ap.yurkov@arriam.ru
ORCID iD: 0000-0002-2231-6466
SPIN-code: 9909-4280

Cand. Sci. (Biology)

Russian Federation, 3 Podbel’skogo hwy, Pushkin, Saint Petersburg, 196608

References

  1. Mammadov J, Buyyarapu R, Guttikonda S, et al. Wild relatives of maize, rice, cotton, and soybean: Treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci. 2018;9:886. doi: 10.3389/fpls.2018.00886
  2. Luo Y, Ma L, Du W, et al. Identification and characterization of salt- and drought-responsive AQP family genes in Medicago sativa L. Int J Mol Sci. 2022;23(6):3342. doi: 10.3390/ijms23063342
  3. Bárzana G, Aroca R, Bienert GP, et al. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. MPMI. 2014;27(4):349–363. doi: 10.1094/MPMI-09-13-0268-R
  4. Maurel C, Boursiac Y, Luu D-T, et al. Aquaporins in plants. Physiol Rev. 2015;95(4):1321–1358. doi: 10.1152/physrev.00008.2015
  5. Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol Res. 2018;51(1):4. doi: 10.1186/s40659-018-0152-0
  6. Zhou X, Yi D, Ma L, Wang X. Genome-wide analysis and expression of the aquaporin gene family in Avena sativa L. Front Plant Sci. 2024;14:1305299. doi: 10.3389/fpls.2023.1305299
  7. Laloux T, Junqueira B, Maistriaux L, et al. Plant and mammal aquaporins: Same but different. Int J Mol Sci. 2018;19(2):521. doi: 10.3390/ijms19020521
  8. Danielson JÅH, Johanson U. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol. 2008;8(1):45. doi: 10.1186/1471-2229-8-45
  9. Abascal F, Irisarri I, Zardoya R. Diversity and evolution of membrane intrinsic proteins. Biochimica et Biophysica Acta (BBA) — General Subjects. 2014;1840(5):1468–1481. doi: 10.1016/j.bbagen.2013.12.001
  10. Yaneff A, Sigaut L, Marquez M, et al. Heteromerization of PIP aquaporins affects their intrinsic permeability. PNAS USA. 2014;111(1):231–236. doi: 10.1073/pnas.1316537111
  11. Kaldenhoff R, Fischer M. Functional aquaporin diversity in plants. Biochimica et Biophysica Acta (BBA) — Biomembranes. 2006;1758(8):1134–1141. doi: 10.1016/j.bbamem.2006.03.012
  12. Maurel C, Verdoucq L, Luu D-T, Santoni V. Plant Aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008;59(1):595–624. doi: 10.1146/annurev.arplant.59.032607.092734
  13. Johnson KD, Höfte H, Chrispeels MJ. An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GIpF). Plant Cell. 1990;2(6):525–532. doi: 10.1105/tpc.2.6.525
  14. Lopez-Zaplana A, Bárzana G, Ding L, et al. Aquaporins involvement in the regulation of melon (Cucumis melo L.) fruit cracking under different nutrient (Ca, B and Zn) treatments. Environ Exp Bot. 2022;201:104981. doi: 10.1016/j.envexpbot.2022.104981
  15. Loqué D, Ludewig U, Yuan L, Von Wirén N. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol. 2005;137(2):671–680. doi: 10.1104/pp.104.051268
  16. Fleurat-Lessard P, Michonneau P, Maeshima M, et al. The distribution of aquaporin subtypes (PIP1, PIP2 and γ-TIP) is tissue dependent in soybean (Glycine max) root nodules. Ann Bot. 2005;96(3):457–460. doi: 10.1093/aob/mci195
  17. Fortin MG, Morrison NA, Verma DPS. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res. 1987;15(2):813–824. doi: 10.1093/nar/15.2.813
  18. Kruse E, Uehlein N, Kaldenhoff R. The aquaporins. Genome Biol. 2006;7(2):206. doi: 10.1186/gb-2006-7-2-206
  19. Pommerrenig B, Diehn TA, Bienert GP. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci. 2015;238:212–227. doi: 10.1016/j.plantsci.2015.06.002
  20. Mizutani M, Watanabe S, Nakagawa T, Maeshima M. Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol. 2006;47(10):1420–1426. doi: 10.1093/pcp/pcl004
  21. Ma JF, Tamai K, Yamaji N, et al. A silicon transporter in rice. Nature. 2006;440(7084):688–691. doi: 10.1038/nature04590
  22. Lopez D, Amira MB, Brown D, et al. The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. Plant Mol Biol. 2016;91(4–5):375–396. doi: 10.1007/s11103-016-0462-y
  23. Hussain A, Tanveer R, Mustafa G, et al. Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics. 2020;112(1):263–275. doi: 10.1016/j.ygeno.2019.02.005
  24. Ishikawa F, Suga S, Uemura T, et al. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 2005;579(25):5814–5820. doi: 10.1016/j.febslet.2005.09.076
  25. Noronha H, Araújo D, Conde C, et al. The grapevine uncharacterized intrinsic protein 1 (VvXIP1) is regulated by drought stress and transports glycerol, hydrogen peroxide, heavy metals but not water. PLoS ONE. 2016;11(8): e0160976. doi: 10.1371/journal.pone.0160976
  26. Jia Y, Liu X. Polyploidization and pseudogenization in allotetraploid frog Xenopus laevis promote the evolution of aquaporin family in higher vertebrates. BMC Genom. 2020;21(1):525. doi: 10.1186/s12864-020-06942-y
  27. Qadir M, Hussain A, Iqbal A, et al. Microbial utilization to nurture robust agroecosystems for food security. Agronomy. 2024;14(9):1891. doi: 10.3390/agronomy14091891
  28. Yurkov AP, Kryukov AA, Gorbunova AO, et al. Diversity of arbuscular mycorrhizal fungi in distinct ecosystems of the North Caucasus, a temperate biodiversity hotspot. J Fungi. 2023;10(1):11. doi: 10.3390/jof10010011
  29. Yurkov AP, Jacobi LM, Gapeeva NE, et al. Development of arbuscular mycorrhiza in highly responsive and mycotrophic host plant–black medick (Medicago lupulina L.). Russian Journal of Developmental Biology. 2015;46(5):263–275. doi: 10.1134/S1062360415050082
  30. Yurkov A, Kryukov A, Gorbunova A, et al. AM-induced alteration in the expression of genes, encoding phosphorus transporters and enzymes of carbohydrate metabolism in Medicago lupulina. Plants. 2020;9(4):486. doi: 10.3390/plants9040486
  31. Rusak TI, Shkutov EN. Stable wilting humidity on old arable peat soils of polesye. Land reclamation. 2008;(2):154–162. EDN: VDFKSR
  32. Min X, Wu H, Zhang Z, et al. Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. J Plant Biochem Biotechnol. 2019;28(3):320–335. doi: 10.1007/s13562-018-0484-4
  33. MacRae E. Extraction of plant RNA. In: Hilario E, Mackay J, editors. Protocols for nucleic acid analysis by nonradioactive probes. Methods in Molecular Biology. Vol. 353. Humana Press; 2007. P. 15–24. doi: 10.1385/1-59745-229-7:15
  34. Yurkov AP, Puzanskiy RK, Avdeeva GS, et al. Mycorrhiza-induced alterations in metabolome of Medicago lupulina leaves during symbiosis development. Plants. 2021;10(11):2506. doi: 10.3390/plants10112506
  35. Martynenko E, Arkhipova T, Akhiyarova G, et al. Effects of a Pseudomonas strain on the lipid transfer proteins, appoplast barriers and activity of aquaporins associated with hydraulic conductance of pea plants. Membranes. 2023;13(2):208. doi: 10.3390/membranes13020208
  36. Ding M, Li J, Fan X, et al. Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Curr Genet. 2018;64(5):1057–1069. doi: 10.1007/s00294-018-0818-8
  37. Li G, Chen T, Zhang Z, et al. Roles of aquaporins in plant-pathogen interaction. Plants. 2020;9(9):1134. doi: 10.3390/plants9091134
  38. Spatafora JW, Chang Y, Benny GL, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028–1046. doi: 10.3852/16-042
  39. Ni Y, Bao H, Zou R, et al. Aquaporin ZmPIP2;4 promotes tolerance to drought during arbuscular mycorrhizal fungi symbiosis. Plant Soil. 2024;508:1–20. doi: 10.1007/s11104-024-06778-5
  40. Asadollahi M, Iranbakhsh A, Ahmadvand R, et al. Synergetic effect of water deficit and arbuscular mycorrhizal symbiosis on the expression of aquaporins in wheat (Triticum aestivum L.) roots: insights from NGS RNA-sequencing. Physiol Mol Biol Plants. 2023;29(2):195–208. doi: 10.1007/s12298-023-01285-w
  41. Kakouridis A, Hagen JA, Kan MP, et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist. 2022;236(1):210–221. doi: 10.1111/nph.18281
  42. Mashini AG, Oakley CA, Grossman AR, et al. Immunolocalization of metabolite transporter proteins in a model cnidarian-dinoflagellate symbiosis. Appl Environ Microbiol. 2022;88(12):e00412–22. doi: 10.1128/aem.00412-22
  43. Wang D, Ni Y, Xie K, et al. Aquaporin ZmTIP2;3 promotes drought resistance of maize through symbiosis with arbuscular mycorrhizal fungi. Int J Mol Sci. 2024;25(8):4205. doi: 10.3390/ijms25084205

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evaluation of the results of the growing season under drought conditions of alfalfa plants (line MlS-1 M. lupulina) inoculated with the arbuscular mycorrhiza (AM) fungus Rhizophagus irregularis: productivity indicators of the fresh weight of aboveground parts (a), fresh weight of roots (b); symbiotic efficiency calculated based on the weight of aboveground parts (c) and the weight of roots (d); mycorrhization indicators of the incidence of mycorrhizal infection - F (e) and the abundance of arbuscules in the root - A (f) on the 24th and 48th days from planting and inoculation.

Download (229KB)
3. Fig. 2. Relative transcript levels (normalized 2–ΔΔCt value) in M. lupulina roots 24 days after planting and inoculation with Rhizophagus irregularis arbuscular mycorrhiza (at the second leaf development stage) after drought. *Statistically significant differences in the variant with/without arbuscular mycorrhiza (p < 0.05); **presence of specific expression in the variant.

Download (204KB)
4. Fig. 3. Relative transcript levels (normalized 2–ΔΔCt value) in M. lupulina roots on the 48th day after planting and inoculation with arbuscular mycorrhiza Rhizophagus irregularis (at the flowering stage) after drought. *Statistically significant differences in the variant with/without arbuscular mycorrhiza (p < 0.05); **presence of specific expression in the variant.

Download (192KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».