🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Dynamics of unstable chromosome aberrations in human populations: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Unstable chromosomal aberrations are key indicators of damage to the genome caused by radiation and chemical factors. Despite a significant number of publications, there is no generalized picture of the prevalence of unstable chromosomal aberrations among the population, especially among high-risk groups associated with industrial activities, environmental pollution and emergency situations. The results of the study are important for an objective assessment of the consequences of large accidents, technogenic disasters and changes in the environmental situation that affect human health. Current paper is devoted to the review of literature sources that contain the data on the dynamics of unstable chromosome aberration in people affected by radiation and chemical exposure. It also deals with the frequency of unstable chromosome aberrations in unexposed individuals that compose the comparison group for the exposed people in various regions of the Russian Federation and some foreign countries. The studies reviewed cover a wide period of time, both short-and long-term effects of exposure, and include the analysis of different situations of radiation damage and chronic chemical exposure. The paper presents the comparative data on the frequency of unstable chromosome aberrations in the control groups and groups of exposed individuals that demonstrate different patterns of body response to external mutagens. The results of the studies emphasize that there is still the need to evaluate chromosome aberrations that develop in people under the effect of radiation and chemical factors. The importance of unified standards of unstable chromosome classification and measurement is also highlighted. It will improve the precision and comparability of the research findings.

About the authors

Anastasiya V. Kupriyanova

Urals Research Center for Radiation Medicine

Email: roksiika@mail.ru
ORCID iD: 0009-0005-8699-2745
Russian Federation, 68-A Vorovskii st, Chelyabinsk, 454141

Yuliya R. Akhmadullina

Urals Research Center for Radiation Medicine

Author for correspondence.
Email: akhmadullina.yul@yandex.ru
ORCID iD: 0000-0003-4394-2228
SPIN-code: 3511-3838
Russian Federation, 68-A Vorovskii st, Chelyabinsk, 454141

References

  1. Selezneva ES. Human ecogenetics: Problems and facts. Samara: Univers-grupp; 2005. ISBN 5-467-00058-6 (In Russ.)
  2. Ordzhonikidze CG, Demidova TB, Krysanov EY. Evaluation of genetic homeostasis in animals at different stages of ontogenesis in the environment. Russian Journal of Developmental Biology. 2014;45:134–142. doi: 10.1134/S1062360414030035 EDN: SOZNKT
  3. Cytogenetic analysis for radiation dose assessment: a manual. Vienna: International Atomic Energy Agency; 2001. Report No. 405.
  4. Kuzhakhmetova DА. Mechanisms of the formation of radiation-induced chromosomal aberrations. Bulletin of the council of young scientists and specialists of the Chelyabinsk region. 2020;1(2):18–24. EDN: YGTGKH
  5. Bryant PE, Riche AC, Terry SYA. Mechanisms of the formation of radiation-induced chromosomal aberrations. Mutat Res Genet Toxicol Environ Mutagen. 2010;701(1):23–26. doi: 10.1016/j.mrgentox.2010.03.016
  6. Zaitseva NV, Zemlyanova MA, Alekseyev VB, Scherbina SG. Cytogenetic markers and hygienic criteria for assessment of chromosomal abnormalities in residents and workers exposed to chemical mutagens (the case study of metals, aromatic hydrocarbons and formaldehyde). Perm: Knizhniy Format; 2013. 222 p. (In Russ.)
  7. Gelashvili DB, editor. Environmental monitoring. Part X: textbook. Nizhny Novgorod: Nizhny Novgorod State University; 2019. 188 p. (In Russ.)
  8. Rubtsov NB, Karamysheva TV. The polychrome of modern cytogenetics, or multicolor FISH today. Information Bulletin of VOGIS. 1999;11:5. (In Russ.) EDN: HRSKTD
  9. Nugis VYu FISH-method: technique of cytogenetic retrospective dose evaluation. Saratov Journal of Medical Scientific Research. 2016;12(4):671–678. EDN: YPYFKV
  10. Bochkov NP, Chebotarev AN, Katosova LD, Platonova VI. The database for analysis of quantitative characteristics of chromosome aberration frequencies in the culture of human peripheral blood lymphocytes. Genetika. 2001;37(4):549–557. EDN: MPICAH
  11. Sevan’kaev AV, Khvostunov IK, Snigireva GP, et al. Comparative analysis of cytogenetic examination of control groups of subjects carried out in different Russian laboratories. Radiation biology. Radioecology. 2013;53(1):5–24. (In Russ.) doi: 10.7868/S0869803112060124 EDN: PUXXVH
  12. Druzhinin VG. Quantitative characteristics of chromosome aberration frequency in the human population of a large Western Siberian industrial region. Russian Journal of Genetics. 2003;39:1161–1167. doi: 10.1023/A:1026179011781 EDN: LHQKIR
  13. Minina VI, Druzhinin VG, Shabaldin AV, et al. Structural chromosome disorders in Kuzbass women. Mother and baby in Kuzbass. 2006;(3):16–19. (In Russ.) EDN: KTOOQL
  14. Druzhinin VG, Sinitsky MY, Larionov AV, et al. Assessing the level of chromosome aberrations in peripheral blood lymphocytes in long-term resident children under conditions of high exposure to radon and its decay products. Mutagenesis. 2015;30(5):677–683. doi: 10.1093/mutage/gev029 EDN: UIFXCB
  15. Sofuni T, Honda T, Itoh M, et al. Relationship between the radiation dose and chromosome aberrations in atomic bomb survivors of Hiroshima and Nagasaki. J Radiat Res. 1978;19(2):126–140. doi: 10.1269/jrr.19.126
  16. Lazutka JR, Lekevicius R, Dedonyte V, et al. Chromosomal aberrations and sister-chromatid exchanges in Lithuanian populations: effects of occupational and environmental exposures. Mutat Res Genet Toxicol Environ Mutagen. 1999;445(2):225–239. doi: 10.1016/s1383-5718(99)00128-x EDN: LNBJGJ
  17. Goloshchapov AP, Rajanova GN. Assessment of genotoksichesky influence of environmental factors on adult population of the industrial city. Problems of Regional Ecology. 2010;(5):127–132. EDN: NCGDNH
  18. Sasaki MS, Hayata I, Kamada N, et al. Chromosome aberration analysis in persons exposed to low-level radiation from the JCO criticality accident in Tokai-mura. J Radiat Res. 2001;42(S):107–116. doi: 10.1269/jrr.42.S107
  19. Vorobtsova I, Timofeyeva N, Bogomasova A, Semyonov A. Age-response of stable chromosome aberrations detected by FISH in lymphocites of healthy donors and people exposed to accidental irradiation in low doses. Medline.Ru. 2003;4:125–127.
  20. Vorobtsova IE, Semenov AV. Variation in the frequencies of spontaneous and in vitro induced chromosome aberrations in human lymphocytes during natural and radiation-induced aging. Biophysics. 2010;55(5):878–882. doi: 10.1134/S0006350910050349 EDN: MOEOHV
  21. Chshiyeva FT. Spatiotemporal cytogenetic monitoring of the population of North Ossetia exposed to technogenic load [dissertation]. Moscow; 2018. 236 p. (In Russ.)
  22. Rossner P Jr, Rossnerova A, Sram RJ. Oxidative stress and chromosomal aberrations in an environmentally exposed population. Mutat Res Genet Toxicol Environ Mutagen. 2011;707(1–2):34–41. doi: 10.1016/j.mrfmmm.2010.12.005
  23. Tanaka K, Ohtaki M, Hoshi M. Chromosome aberrations in Japanese fishermen exposed to fallout radiation 420–1200 km distant from the nuclear explosion test site at Bikini Atoll: report 60 years after the incident. Radiat Environ Biophys. 2016;55:329–337. doi: 10.1007/s00411-016-0648-3 EDN: XUKERF
  24. Bianco GE, Suarez E, Cazon L, et al. Prevalence of chromosomal aberrations in Argentinean agricultural workers. Environ Sci Pollut Res Int. 2017;24(26):21146–21152. doi: 10.1007/s11356-017-9664-3 EDN: BGXXFB
  25. Minina VI, Nelyubova YA, Savchenko YA, et al. Estimation of chromosome disorders in workers at coal thermal power plant. Russian Journal of Occupational Health and Industrial Ecology. 2019;59(3):149–154. doi: 10.31089/1026-9428-2019-59-3-149-154 EDN: SELATR
  26. Savchenko YA, Minina VI, Bakanova ML, et al. Chromosomal aberrations in coal mine workers with lung diseases. Russian Journal of Occupational Health and Industrial Ecology. 2020;60(4):226–231. doi: 10.31089/1026-9428-2020-60-4-226-231 EDN: KYCXMR
  27. Apsalikov KN, Muldagaliev TJ, Belikhina TI, et al. Retrospective analysis and evaluation of the results of cytogenetic studies of Kazakhstan’s population has been subjected to radiation and their descendants, as a result of nuclear tests at the Semipalatinsk test site. Medical and Biological Problems of Life Activity. 2013;(1):42–49. EDN: RBWYVJ
  28. Tsepenko VV. Dynamics of cytogenetic disorders in children and adolescents living in areas contaminated with radionuclides after the Chernobyl accident [dissertation]. Obninsk; 2006. (In Russ.)
  29. Golub EV. The assessment of remote cytogenetic effects in clean up workers of Chernobyl accident. Radiation Biology. Radioecology. 2009;49(5):563–567. (In Russ.) EDN: KWJACB
  30. Snigiryova GP, Bogomazova AN, Novitskaya NN, Khazins ED. Results of the long-term cytogenetic monitoring of Chernobyl recovery workers. Medical radiology and radiation safety. 2008;53(4):38–45. EDN: JTCYAP
  31. Snigiryova GP, Novitskaya NN. Possibility of cytogenetic methods for examination of people exposed as a result of nuclear explosions on the Semipalatinsk test site. Vestnik of the Russian Scientific Center of Roentgenoradiology. 2011;(11–1):17. EDN: OJUUFL
  32. Slozina N, Neronova E, Nikiforov A. Persistence of dicentrics in Chernobyl clean-up workers who suffered from low doses of radiation. Appl Radiat Isot. 2001;55(3):335–338. doi: 10.1016/s0969-8043(01)00059-8 EDN: LGRENN
  33. Neronova E, Slozina N, Nikiforov A. Chromosome alterations in cleanup workers sampled years after the Chernobyl accident. Radiat Res. 2003;160(1):46–51. doi: 10.1667/0033-7587(2003)160[0046:CAICWS]2.0.CO;2 EDN: LIFJXD
  34. Cheshik LA, Shimanets TV, Melnov SB, Nikonovich SN. Peculiarities of cytogenetic status dynamics in liquidators of Chernobyl nuclear power station accident consequences. Health and Ecology Issues. 2004;(2):22–27. doi: 10.51523/2708-6011.2004-1-2-3 EDN: YUFOAL
  35. Cherednichenko OG, Baigushikova GM, Pilyugina AL, et al. Dynamics of frequency of chromosomal disturbances in p. Culsars residents when estimating the environmental situation in the Kazakhstan part of the Caspian region. In: Actual problems of ecology and nature management: collection of scientific works of the XX International Scientific and Practical Conference: in 2 volumes. Proceedings of the Current problems of ecology and nature management conference. Moscow: Peoples’ Friendship University of Russia (RUDN University); 2019. P. 493–496. (In Russ.) EDN: MONDTW
  36. Kharchenko ТV, Arzhavkina LG, Ivanov МВ, et al. Сytogenetic examination of the workers of higher chemical hazard enterprises and the population of the neighborhood. Hygiene and sanitation, Russian journal. 2011;(5):42–44. EDN: OHIKKP
  37. Kharchenko TV, Arzhavkina LG, Siniachkin DA, Yazenok AV. Cytogenetical alterations in the workers of higher chemical hazard enterprises in accordance with duration of the employment period. Hygiene and sanitation, Russian journal. 2014;93(5):107–112. EDN: SZEVTH
  38. Neronova EG, Alexanin SS. Assessment of cytogenetic indices in persons exposed to ionizing radiation. Medical-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2014;(1):70–76. EDN: SFFSFN
  39. Kharchenko TV, Arzhavkina LG, Siniachkin DA, Yazenok AV. Chromosomal disorders in workers of chemically hazardous enterprises with the different health status. Hygiene and sanitation, Russian journal. 2015;94(8):31–35. EDN: VJZCYN
  40. Kenzhina LB, Mamyrbayeva AN, Lukashenko SN, et al. Background level of unstable chromosome aberrations in the Kazakhstan population: A human biomonitoring study. Int J Environ Res Publ health. 2022;19(14):8485. doi: 10.3390/ijerph19148485 EDN: OFFPFU
  41. Maslov ML, Zhurkov VS, Golubev R. The influence of atmospheric air pollution on the chromosomal apparatus of human somatic cells. Hygiene and sanitation, Russian journal. 1981;(9):11–13. (In Russ.)
  42. Volkov A, Golovina T, Minina V, et al. A modification factor of spontaneous chromosomal aberrations in miner’s towns and settlements. Hygiene and sanitation, Russian journal. 2006;(3):9–11. EDN: HTEGPX
  43. Chshiyeva FT, Maysuradze LV, Chopikashvili LV, Gagloyeva LN. Dynamics of frequency of chromosomal aberrations in blood of pregnant women living in Vladikavkaz. Izvestiya of Samara scientific center of the Russian Academy of Sciences. 2014;16(5–2):753–755. EDN: TNYXUZ
  44. Komkova GV, Zheleznova MA, Trubnikova EV, Ivanov VP. The level of spontaneous mutagenesis in the Kursk region as part of the assessment of the genetic consequences of the Chernobyl disaster. Auditorium. 2017; 3(15):13–28. (In Russ.)
  45. Chshiyeva FT. Cytogenetic analysis of residents of North Ossetia exposed to harmful factors. Ecological Genetics. 2014;12(2):68–73. doi: 10.17816/ecogen12268-73 EDN: SQYAER
  46. Sabirov ZhB. Evaluation of the cytogenetic status of the population living in the area before the environmental crisis. Occupational hygiene and medical ecology. 2016;(4):70–78. (In Russ.)
  47. Chshiyeva FT. The cytogenetic analysis of the population of ecologically different regions of North Ossetia. Russian Journal of Genetics: Applied Research. 2016;(6):191–196. doi: 10.1134/S2079059716020027 EDN: WWDPHP
  48. Tompa A, Major J, Jakab MG. Monitoring of benzene-exposed workers for genotoxic effects of benzene: improved-working-condition-related decrease in the frequencies of chromosomal aberrations in peripheral blood lymphocytes. Mutat Res Fundam Mol Mech Mutag. 1994;304(2):159–165. doi: 10.1016/0027-5107(94)90207-0
  49. Mandrik IA, Komkova GV, Zheleznova MA. Cytogenetic monitoring among residents of the Kursk region. In: Proceedings of the 72nd Scientific Conference of KSMU and the session of the Central Chernozem Scientific Center of the Russian Academy of Medical Sciences. Proceeding of the Russian Symposium “Patterns of integration of physiological functions in the norm and their disintegration in pathology”. In 3 vol. Kursk: KSMU; 2007. Vol. II. P. 17–19. (In Russ.)
  50. Minina VI, Druzhinin VG, Golovina TA, et al. Dynamics of chromosomal aberrations level in residents of an industrial city in conditions of changing atmosphere pollution. Ecological Genetics. 2014;12(3):60–70. doi: 10.17816/ecogen12360-70 EDN: STGIZX
  51. Nugis VYu, Bushmanov AYu, Zapadinskaya HE, et al. Cytogenetic studies 28–29 years after the accident at the Chernobyl NPP. Medical radiology and radiation safety. 2016;61(4):35–42. EDN: WHAWLH
  52. Vozilova AV. Long-term cytogenetic effects of chronic irradiation of the population of the South Urals [dissertation abstract]. Moscow; 1997. 26 p. (In Russ.)
  53. Vozilova AV, Akleev AV. The dynamics of unstable chromosome aberrations frequency among people exposed on the Techa river. In: Proceedings of the International conference “Genetic consequences of emergency radiation situations”; 2002 Jun 10–13. Moscow: Peoples’ Friendship University of Russia. EDN: XMVEWL
  54. Sevan’kaev AV, Ankina MA, Golub EV, et al. The results of cytogenetic studies of persons from the settlements adjacent to Semipalatinsk firing ground (during the period of activity of joint commission in 1989). Radiation biology. Radioecology. 1995;35(5):596–607. EDN: VXEXZV
  55. Abil’dinova GZh, Svyatova GS, Kuleshov NP. Chromosomal instability parameters in the population affected by nuclear explosions at the Semipalatinsk nuclear test site. Russian Journal of Genetics. 2003;39(8):944–947. doi: 10.1023/A:1025391109169 EDN: OPSGVF
  56. Brewen JG, Preston RJ, Littlefield LG. Radiation-induced human chromosome aberration yields following an accidental whole-body exposure to 60Co γ-Rays. Radiat Res. 1972;49(3):647–656. doi: 10.2307/3573421
  57. Kanda R, Minamihisamatsu M, Hayata I. Dynamic analysis of chromosome aberrations in three victims of the Tokai-mura criticality accident. Int J Radiat Biol. 2002;78(9):857–862. doi: 10.1080/09553000210152953
  58. Smerhovsky Z, Landa K, Rössner P, et al. Increased risk of cancer in radon-exposed miners with elevated frequency of chromosomal aberrations. Mutat Res Fundam Mol Mech Mutag. 2002;514(1–2):165–176. doi: 10.1016/s1383-5718(01)00328-x EDN: ATTNPX
  59. Kaddour A, Colicchio B, Buron D, et al. Transmission of induced chromosomal aberrations through successive mitotic divisions in human lymphocytes after in vitro and in vivo radiation. Sci Rep. 2017;7(1):1–11. doi: 10.1038/s41598-017-03198-7 EDN: UNFDIX
  60. Stimpson KM, Matheny JE, Sullivan BA. Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res. 2012;20(5):595–605. doi: 10.1007/s10577-012-9302-3 EDN: NAGSYR
  61. Mun SA, Larin SA, Glushkov AN. Air and water technogenic pollution and cases of lung cancer and carcinoma of the stomach of Kemerovo oblast population in 1990–2010 years. Izvestiya of Samara Scientific Center of the Russian Academy of Sciences. 2012;14(5–2):486–489. EDN: PZZSBF
  62. Chshiyeva FT, Chsiev OL. Long-term dynamics of spontaneous mutagenesis in the blood of the inhabitants of the industrial region. Westnik IAELPS. 2016;21(3):45–50.
  63. Cherednichenko O, Demchenko G, Kapysheva U, et al. Trends in the cytogenetic and immunologic status of healthy persons; Kazakhstan, 2007–2022. Mut Res Genet Toxicol Environ Mutag. 2024;899:503822. doi: 10.1016/j.mrgentox.2024.503822 EDN: WHWLIH
  64. Kucerová M, Polívková Z, Gregor V. Effect of environmental factors on induced chromosomal aberrations in newborns. Mutat Res Lett. 1985;143(4):271–274. doi: 10.1016/0165-7992(85)90092-2
  65. Aiassa DE, Mañas FJ, Gentile NE, et al. Evaluation of genetic damage in pesticides applicators from the province of Córdoba, Argentina. Environ Sci Pollut Res Int. 2019;26(20):20981–20988. doi: 10.1007/s11356-019-05344-2 EDN: UKHFOG
  66. Zeljezic D, Garaj-Vrhovac V. Chromosomal aberration and single cell gel electrophoresis (Comet) assay in the longitudinal risk assessment of occupational exposure to pesticides. Mutagenesis. 2001;16(4):359–363. doi: 10.1093/mutage/16.4.359 EDN: ITWTWJ

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplement 1
Download (78KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».