🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The specifically nonspecific stress from a genetic point of view: “Press – Stress – Gress” path

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The biological concept of “stress”, set out in the works of G. Selye, created an entire scientific direction. It has played and continues to play a major role in the development of biomedical research. Scientific progress leads to filling the term “stress” with new biological content at different levels of study. At the same time, unjustified expansion often leads to a blurring of the concept, clogging with “cryptic” terms that complicate the understanding of the phenomenon. The purpose of the work is to discuss some points that complicate or distort the scientific content of the term “stress”. It seems appropriate to consider stress as a non-specific marker of damage to the organism. It should not be used to describe various non-specific changes caused by routine strain that any living organism constantly experiences. From a genetic point of view, it is proposed to consider the stress phenomenon as a condition that occurs when the body is unable to adapt within the limits of its “reaction norm”, determined by the genotype. Destabilization (especially structural) of the mammalian genome induced by various factors should be considered as an inseparable sign of overstrain of the organism and the formation of stress. Attempts to adapt at the genomic level may lead to changes in the rate and direction of the evolutionary process. It is proposed to differentiate stress taking into account the classification of living organisms and the level of changes being studied.

About the authors

Eugene V. Daev

Saint Petersburg State University; Pavlov Institute of Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: st004838@mail.spbu.ru
ORCID iD: 0000-0003-2036-6790
SPIN-code: 8926-6034

Dr. Sci. (Biology)

Russian Federation, 7–9 Universitetskaya emb., Saint Petersburg, 199034; Saint Petersburg

References

  1. Feynman RP. Surely you’re joking, Mr. Feynman: adventures of a curious character. New York: WW Norton; 1997. 317 p.
  2. Kültz D. Defining biological stress and stress responses based on principles of physics. J Exp Zool A Ecol Integr Physiol. 2020;333(6):350–358. doi: 10.1002/jez.2340 EDN: CILZSQ
  3. Selye H. From dream to discovery. On being scientist. New York: McGrow-Hill; 1964.
  4. Selye H. A Syndrome produced by Diverse Nocuous Agents. Nature. 1936;138:32–33. doi: 10.1038/138032a0
  5. Selye H. The story of the adaptation syndrome. (Told in the form of informal, illustrated lectures). Montreal: Acta; 1952.
  6. Selye H. Confusion and controversy in the stress field. J Human Stress. 1975;1(2):37–44. doi: 10.1080/0097840X.1975.9940406
  7. Mojica EA, Kültz D. Physiological mechanisms of stress-induced evolution. J Exp Biol. 2022;225(S1):jeb243264. doi: 10.1242/jeb.2432642022
  8. Selye H. The stress of life. New York: McGraw-Hill Book Co; 1956.
  9. Fortier C, Selye H. Adrenocorticotrophic effect of stress after severance of the hypothalamo-hypophyseal pathways. Am J Physiol. 1949; 159(3):433–439. doi: 10.1152/ajplegacy.1949.159.3.433
  10. Hoffmann, AA, Hercus, MJ. Environmental stress as an evolutionary force. BioSci. 2000;50(3):217–226. doi: 10.1641/0006-3568(2000)050[0217: ESAAEF]2.3.CO;2 EDN: LUFDNR
  11. Yaribeygi H, Panahi Y, Sahraei H, et al. The Impact of stress on body function: a review. EXCLI J. 2017;16:1057–1072. doi: 10.17179/excli2017-480 EDN: YHFEJI
  12. Sun S, Zhou J. Molecular mechanisms underlying stress response and adaptation. Thorac Cancer. 2018;9(2):218–227. doi: 10.1111/1759-7714.12579 EDN: YDWPAL
  13. Selye H. In vivo. The case for supramolecular biology presented in six informal, illustrated lectures. Foreword: Albert Szent-Györgyi; New York: Liveright; 1967.
  14. Eremina MA., Gruntenko NE. The neuroendocrine stress-response in insects: the history of the development of the concept. Vavilov Journal of Genetics and Breeding. 2017;21(7):825–832. doi: 10.18699/VJ17.302 EDN: ZUCIIV
  15. Sharma DK. Physiology of Stress and its Management. J Med Stud Res. 2018;1:001. doi: 10.24966/MSR-5657/100001
  16. Harkness KL, Hayden EP, Lopez-Duran NL. Stress sensitivity and stress sensitization in psychopathology: An introduction to the special section. J Abnorm Psychol. 2015;124(1):1–3. doi: 10.1037/abn0000041
  17. Kageyama K, Nemoto T. Molecular mechanisms underlying stress response and resilience. Int J Mol Sci. 2022;23(16):9007. doi: 10.3390/ijms23169007 EDN: TPGPNR
  18. Kolesnik EA. Kolesnik EA. Stress-reaction as a protective immune mechanism aimed at restoringthe organism’s homeostasis. Bulletin of Chelyabinsk State University. Education and healthcare. 2020;(4):5–14. doi: 10.24411/2409-4102-2020-10401 EDN: MSNNTL
  19. James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol. 2023;14:1085950. doi: 10.3389/fendo.2023.1085950
  20. Kyrou I, Tsigos C. Stress mechanisms and metabolic complications. Horm Metab Res. 2007;39(6):430–438. doi: 10.1055/s-2007-981462
  21. Tsigos C, Kyrou I, Kassi E, Chrousos GP. Stress: endocrine physiology and pathophysiology. In: Feingold KR, Anawalt B, Blackman MR, et al. editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.
  22. Ising M, Holsboer F. Genetics of stress response and stress-related disorders. Dialogues Clin Neurosci. 2006;8(4):433–444. doi: 10.31887/DCNS.2006.8.4/missing
  23. Lempesis IG, Georgakopoulou VE, Papalexis P, et al. Role of stress in the pathogenesis of cancer (Review). Int J Oncol. 2023;63:124. doi: 10.3892/ijo.2023.5572 EDN: EYPHVX
  24. Del Giudice M, Buck CL, Chaby LE, et al. What is stress? A systems perspective. Integr Comp Biol. 2018;58(6):1019–1032. doi: 10.1093/icb/icy114
  25. Day TA. Defining stress as a prelude to mapping its neurocircuitry: No help from allostasis. Prog Neuro-Pharmacol Biol Psychiatry. 2005;29(8):1195–1200. doi: 10.1016/j.pnpbp.2005.08.005
  26. Davies KJA. Adaptive homeostasis. Mol Aspects Med. 2016;49:1–7. doi: 10.1016/j.mam.2016.04.007
  27. Fink G. 2016. Stress, definitions, mechanisms, and effects outlined: lessons from anxiety. In: Fink G, ed. Stress: concepts, cognition, emotion, and behavior. Vol. 1. Handbook of stress series. San Diego: Elsevier Inc.; 2016. P. 3–11. doi: 10.1016/B978-0-12-800951-2.00001-7
  28. Selye H. Stress without distress. Philadelphia: Lippincott; 1974.
  29. Selye H. Stress in health and disease. Boston (MA): Butterworths, Stoneham; 1976.
  30. Fink G. Stress: concepts, definition and history. In: Reference module inneuroscience and biobehavioral psychology. Amsterdam: Elsevier Inc.; 2017. P. 1–9. doi: 10.1016/B978-0-12-809324-5.02208-2 EDN: CLOCJP
  31. Ishaque S, Khan N, Krishnan S. Physiological signal analysis and stress classification from VR simulations using decision tree methods. Bioengineering. 2023;10(7):766. doi: 10.3390/bioengineering10070766 EDN: RLQXYO
  32. Patochkina NA, Komel’kova MV, Cejlikman OB, Lapshin MS. Stress: psychological, biochemical and physiological aspects: a tutorial. Chelyabinsk: Publishing center of SUSU; 2017. (In Russ).
  33. Lu S, Wei F, Li G. The evolution of the concept of stress and the framework of the stress system. Cell Stress. 2021;5(6):76–85. doi: 10.15698/cst2021.06.250 EDN: PBWDTK
  34. Coffman JA. Chronic stress, physiological adaptation and developmental programming of the neuroendocrine stress system. Future Neurol. 2020;15(1):FNL39. doi: 10.2217/fnl-2019-0014 EDN: LRTWSG
  35. Markel’ AL. Behavior, stress and evolution. Moscow: PROMEDIA; 13 p. (In Russ).
  36. Stanojlović O, Šutulović N, Mladenović D, et al. Neurophysiology of stress — from historical to modern approach. Medicinska istaživanja. 2022;55(1):51–57. doi: 10.5937/medi55-37829
  37. Koolhaas JM, Bartolomucci A, Buwalda B, et al. Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35(5):1291–1301. doi: 10.1016/j.neubiorev.2011.02.003
  38. Mel’nikova ML. Psychology of stress: theory and practice: teaching aid. Maksimova LA, editor. Ekaterinburg: UGPU; 2018. (In Russ.)
  39. Bernard C. Lectures on the phenomena of life common to animals and plants. In: Hoff HE, Guillemin R, Guillemin L. Trans (1878). Vol. 1. Springfield (IL): Charles C Thomas; 1974.
  40. Cannon WB. The wisdom of the body. New York: W.W. Norton and Co., Inc.; 1932. doi: 10.1097/00000441-193212000-00028
  41. Johannsen W. The genotype conception of heredity. The American Naturalist. 1911;45(531):129–159. doi: 10.1086/279202
  42. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015;160(5):816–827. doi: 10.1016/j.cell.2015.02.010 EDN: XMLPPD
  43. Chatterjee N., Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235–263. doi: 10.1002/em.22087 EDN: VOQYVV
  44. Horne SD, Chowdhury SK, Heng HHQ. Stress, genomic adaptation, and the evolutionary trade-off. Front Genet. 2014;(5):92. doi: 10.3389/fgene.2014.00092 EDN: SOYGNT
  45. Erol A. Genotoxic stress-mediated cell cycle activities for the decision of cellular fate. Cell Cycle. 2011;10(19):3239–3248. doi: 10.4161/cc.10.19.17460
  46. Bonetti Valente V, de Melo Cardoso D, Kayahara GM, et al. Stress hormones promote DNA damage in human oral keratinocytes. Sci Rep. 2021;11:19701. doi: 10.1038/s41598-021-99224-w
  47. Parsons PA. Evolutionary rates: effects of stress upon recombination. Biol J Linn Soc. 1988;35(1):49–68. doi: 10.1111/j.1095-8312.1988.tb00458.x EDN: XWLFQN
  48. Fischman HK, Kelly DD. Chromosomes and stress. Int J Neurosci. 1999;99(1–4):201–219. doi: 10.3109/00207459908994325 EDN: LOCMLT
  49. El-Refaiy AI, El-Desouki NI, Abdel-Azeem H, Elbaely MM. Cytogenetical study on the effect of immobilization stress on albino rat and the ameliorative role of diazepam. Curr Sci Int. 2017;6(4):900–907.
  50. Pappalardo AM, Ferrito V, Biscotti MA, et al. Transposable elements and stress in vertebrates: An overview. Int J Mol Sci. 2021;22(4):1970. doi: 10.3390/ijms22041970 EDN: UBEXGE
  51. Daev EV. Genetic aspects of stress neuroendocrinology. In: Penkava NS, Haight LR, editors. Neuroendocrinology research developments. Hauppauge, New York: Nova Science Publishers, Inc.; 2010. P. 119–133.
  52. Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol. 2007; 42(5):399–435. doi: 10.1080/10409230701648502
  53. Fitzgerald DM, Rosenberg SM. What is mutation? A chapter in the series: How microbes “jeopardize” the modern synthesis. PLoS Genet. 2019;15(4): e1007995. doi: 10.1371/journal.pgen.1007995 EDN: TQTPWN
  54. Pribis JP, Zhai Y, Hastings PJ, Rosenberg SM. Stress-induced mutagenesis, gambler cells, and stealth targeting antibiotic-induced evolution. mBio. 2022;13:e01074–22. doi: 10.1128/mbio.01074-22
  55. Goldstein DS, Kopin IJ. Evolution of concepts of stress. Stress. 2007;10(2):109–120. doi: 10.1080/10253890701288935
  56. Ramsay DS, Woods SC. Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev. 2014;121(2):225–247. doi: 10.1037/a0035942

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Simplified diagram of the maintenance of normal vital functions. Fluctuations in environmental factors cause strain in the body, leading to intracellular changes, altered function of gene products, and the genome itself (within the genotype's "normal response"), which leads to the restoration of its homeostasis.

Download (195KB)
3. Fig. 2. Diagram of the relationship between the concepts of “reaction norm” of the genotype (NR) and the “homeostatic range” of the organism (HR). The reaction norm (the boundaries are indicated by a solid line) is a function of the genotype and reflects the potential ability of the genotype G to form phenotypically (and genotypically) different organisms. The dynamically changing boundaries of HR (dotted line) reflect the real adaptive capabilities of a particular organism (in the case of a multicellular organism - the result of a specific interaction between specific environmental conditions and the genotype of the original zygote, that is, a function of (G × E). The zone of constantly changing stress, which accompanies the organism throughout its life, is marked in gray.

Download (90KB)
4. Fig. 3. The concept of stress as a phenomenon that occurs when environmental conditions go beyond the homeostatic range of the organism (i.e., the “reaction norm”), determined by the interaction of its genotype with specific environmental conditions.

Download (336KB)
5. Fig. 4. Changes in the homeostatic range (HR) of an organism with the G1 genotype under stress: a — under environmental conditions E1, which determine a narrow HR; b — under environmental conditions E2, which determine a wide HR. The broken line represents spontaneous fluctuations in environmental conditions. The dotted lines indicate the boundaries of the HR, within which the body functions normally. Everyday strain and stress are highlighted in light and dark gray, respectively. The stages of stress are identified (their duration may vary in each specific case): A (alarm); R (resistance); E (exhaustion); D (death) and death. In the case of a sufficiently wide NR and HR, death of the organism does not occur (B). However, stress-induced non-directional genetic changes (the emergence of new cell genotypes, Gn) lead to subsequent interdependent changes in NR and HR.

Download (115KB)
6. Fig. 5. Schematic representation of stress as a reaction potentially leading to evolutionary transformations (using a single-celled organism as an example). G1 is the genotype; Ph1 is the phenotype (a specific realization of a given genotype); ΔPh=HR1 — possible phenotypic modifications within the framework of regulatory changes in the genome of an organism with the G1 genotype, which corresponds to the concept of the homeostatic range (HR) of this organism (HR1); Stress is a complex of non-specific genetic changes that occur when environmental conditions exceed the HR of a specific organism, determined by the interaction of its genotype with the environment. A, R, E, D are the stages of stress: Alarm, Resistance, Exhaustion, and Death, respectively; ~ is the symbol for the changing genotype, phenotype, and homeostatic interval; G2 is the newly selected genotype, whose reaction norm allows the organism to adapt to the changed environmental conditions. It is this genotype that will subsequently reproduce preferentially. In a population of many somatic and germ cells, it is possible for many different genotypes to emerge, of which only those corresponding to the new environmental conditions will remain.

Download (175KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».