ANALYSIS OF INTERACTION OF PEA (Pisum sativum L.) SYMBIOTIC GENES Sym33 AND Sym42 WHOSE MUTATIONS RESULT IN ABNORMALITES DURING INFECTION THREAD DEVELOPMENT


Cite item

Full Text

Abstract

Using pea single mutant lines SGEFix–-2 (sym33) and RisFixV (sym42), which are characterized by different abnormalities during symbiotic nodule development, including thickening of infection threads’ walls, a double mutant RBT4 line, carrying a pair of symbiotic genes sym33 and sym42 was constructed. The epistasis of the mutant allele sym33 over the mutant allele sym42 with respect to the histological and ultrastructural organisation of nodules was shown. Thus, it was demonstrated that Sym33 gene functions earlier in symbiotic nodule development than Sym42 gene.

About the authors

Viktor E Tsyganov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: viktor_tsyganov@arriam.spb.ru

Anna V Tsyganova

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: anna_khodorenko@arriam.spb.ru

Vera A Voroshilova

Contract Drug Development Company “PSI”, St. Petersburg, RF

Email: vera.voroshilova@psi-cro.com

Aleksey U Borisov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: ayborisov@yandex.ru

Igor A Tikhonovich

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: . contact@arriam.spb.ru

References

  1. Цыганов В. Е., Ворошилова В. А., Розов С. М. и др., 2012. Новая серия симбиотических мутантов гороха, индуцированных на линии SGE // Экол. генетика. Т. X. № 1. С. 19–26.
  2. Цыганов В. Е., Селиверстова Е. В., Ворошилова В. А. и др., 2010. Анализ двойных мутантных линий для определения последовательности функционирования генов гороха (Pisum sativum L.) Sym13, Sym33 и Sym40 во время развития симбиотического клубенька // Экол. генетика. Т. VIII. № 2. С. 3–8.
  3. Цыганова А. В., Китаева А. Б., Бревин Н.Дж., Цыганов В. Е., 2011. Клеточные механизмы развития симбиотических клубеньков у бобовых растений // Сельскохоз. биология. № 3. С. 34–40.
  4. Цыганова А. В., Цыганов В. Е., Финдли К. К. и др., 2009. Распределение арабиногалактанпротеиновэкстензинов в клубеньках мутантов гороха (Pisum sativum L.) с нарушениями в развитии инфекционной нити // Цитология. Т. 51. № 1. С. 53–62.
  5. Цыганова В. Е., Цыганов В. Е., 2012. Роль поверхностных компонентов ризобий в симбиотических взаимодействиях с бобовыми растениями // Усп. соврем. биологии. Т. 132. № 2. С. 211–222.
  6. Borisov A. Y., Morzhina E. V., Kulikova O. A. et. al., 1992. New symbiotic mutants of pea (Pisum sativum L.) affecting either nodule initiation or symbiosome development // Symbiosis. Vol. 14. P. 297–313.
  7. Borisov A. Y., Rozov S. M., Tsyganov V. E. et al., 1997. Sequential functioning of Sym13 and Sym31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.) // Mol. Gen. Genet. Vol. 254. P. 592–598.
  8. Brewin N. J., 2004. Plant cell wall remodelling in the Rhizobium legume symbiosis // Critic. Rev. Plant Sci. Vol. 23. P. 293–316.
  9. Engvild K. J., 1987. Nodulation and nitrogen fixation mutants of pea (Pisum sativum) // Theor. Appl. Genet. Vol. 74. P. 711–713.
  10. Kosterin O. E., Rozov S. M., 1993. Mapping of the new mutation blb and the problem of integrity of linkage group I // Pisum Genet. Vol. 25. P. 27–31.
  11. Lévy J., Bres C., Geurts R. et al., 2004. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses // Science. Vol. 303. P. 1361–1364.
  12. Morzhina E. V., Tsyganov V. E., Borisov A. Y. et al., 2000. Four developmental stages identified by genetic dissection of pea (Pisum sativum L.) root nodule morphogenesis // Plant Sci. Vol. 155. P. 75–83.
  13. Novák K., Pesina K., Nebesarova J. et al., 1995. Symbiotic tissue degradation pattern in the ineffective nodules of three nodulation mutants of pea (Pisum sativum L.) // Ann. Bot. Vol. 76. P. 303–313.
  14. Oldroyd G. E., Downie J. A., 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes // Annu. Rev. Plant. Biol. Vol. 59. P. 519–546.
  15. Ovchinnikova E., Journet E. P., Chabaud M. et al., 2011. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. // Mol. Plant–Microbe Interact. Vol. 24. P. 1333–1344.
  16. Rae A. L., Bonfante-Fasolo P., Brewin N. J., 1992. Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum // Plant J. Vol. 2. P. 385–395.
  17. Rathbun E. A., Naldrett M. J., Brewin N. J., 2002. Identification of a family of extensin-like glycoproteins in the lumen of Rhizobium-induced infection threads in pea root nodules // Mol. PlantMicrobe Interact. Vol. 15. P. 350–359.
  18. Safronova V. I., Novikova N. I., 1996. Comparison of two methods for root nodule bacteria preservation: lyophilization and liquid nitrogen freezing // J. Microbiol. Methods. Vol. 24. P. 231–237.
  19. Tsyganov V. E., Morzhina E. V., Stefanov S. Y. et al., 1998. The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule functioning // Mol. Gen. Genet. Vol. 259. P. 491–503.
  20. Tsyganov V. E., Voroshilova V. A., Herrera-Cervera J. A. et al., 2003. Developmental downregulation of rhizobial genes as a function of symbiosome differentiation in symbiotic root nodules of Pisum sativum L. // New Phytol. Vol. 159. P. 521–530.
  21. Voroshilova V. A., Boesten B., Tsyganov V. E. et al., 2001. Effect of mutations in Pisum sativum L. genes (sym13, sym31, sym33, sym40) blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae // Mol. Plant-Microbe Interact. Vol. 14. P. 471–476.
  22. Wang T. L., Wood E. A., Brewin N. J., 1982. Growth regulators, Rhizobium, and nodulation of peas // Planta. Vol. 155. P. 345–349.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Tsyganov V.E., Tsyganova A.V., Voroshilova V.A., Borisov A.U., Tikhonovich I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».