The efficiency of IVF/ICSI protocols in female subclinical hypothyroidism and thyroid autoimmunity

Cover Page


Cite item

Abstract

While overt hypothyroidism is a well-known risk factor for infertility, the association of subclinical hypothyroidism (SCH) or thyroid autoimmunity with reproductive failure has been still not cleared. This literature review focuses on the most current data linking SCH and/or thyroid autoimmunity with human reproduction, starting with the parameters of ovarian reserve and ending with generalized immunological alterations. The main ART outcome measures are as follows: number of oocytes retrieved, fertilization rate, embryo quality, implantation rate, clinical pregnancy rate per embryo transfer, miscarriage rate, and live birth rate. Summary of the information regarding the effect of levothyroxine supplementation on IVF outcome as well as workup and management of women with SCH and thyroid autoimmunity undergoing ART cycles is also presented in this review.

About the authors

Galina Kh. Safaryan

Academician I.P. Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: galasaf07@gmail.com

Resident Doctor. The Department of Obstetrics, Gynecology, and Reproductive Sciences

Russian Federation, Saint  Petersburg

Alexander M. Gzgzyan

Saint Petersburg State University; The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: agzgzyan@hotmail.com

MD, PhD, DSci (Medicine), Professor. The Department of Obstetrics, Gynecology, and Reproductive Sciences. Medical Faculty; the Head of the Department of Assisted Reproductive Technologies

Russian Federation, Saint Petersburg

Lyailya Kh. Dzhemlikhanova

Saint Petersburg State University; The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: dzhemlikhanova_l@mail.ru

MD, PhD, Associate Professor. The Department of Obstetrics, Gynecology, and Reproductive Sciences, Medical Faculty; the Department of Assisted Reproductive Technologies

Russian Federation, Saint  Petersburg

Dariko A. Niauri

Saint Petersburg State University; The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: d.niauri@mail.ru

MD, PhD, DSci (Medicine), Professor, the Head of the Department of Obstetrics, Gynecology, and Reproductive Sciences. Medical Faculty; Leading Researcher. The Department of Gynecology with the Operating Unit

Russian Federation, Saint  Petersburg

References

  1. Kuharić M, Rozić D, Karner I. Thyroid autoimmunity and infertility. SEEMED J. 2017;1(2):1-10. https://doi.org/10.26332/ seemedj.v1i2.48.
  2. Перминова С.Г. Бесплодие у женщин с заболеваниями щитовидной железы: принципы диагностики, тактика ведения // Акушерство и гинекология: Новости. Мнения. Обучение. – 2013. – № 2. – С. 18–24. [Perminova SG. Infertility in women with thyroid diseases: principles of diagnosis, management. Akusherstvo i ginekologiya: Novosti. Mneniya. Obuchenie 2013;(2):18-24. (In Russ.)]
  3. Строев Ю.И., Чурилов Л.П. Аутоиммунный тиреоидит Хасимото, его последствия и коморбидность // Руководство по аутоиммунным заболеваниям для врачей общей практики / Под ред. И. Шенфельда, П.Л. Мерони. – СПб.: ЭЛБИ, 2017. – С. 298–323. [Stroev YI, Churilov LP. Autoimmunnyy tireoidit KHasimoto, ego posledstviya i komorbidnost’. In: Rukovodstvo po autoimmunnym zabolevaniyam dlya vrachey obshchey praktiki. Ed. by I. Shenfel’d, P.L. Meroni. Saint Petersburg: ELBI; 2017. P. 298-323. (In Russ.)]
  4. Poppe K, Autin C, Veltri F, et al. Thyroid autoimmunity and intracytoplasmic sperm injection outcome: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2018. https://doi.org/10.1210/jc.2017-02633.
  5. Practice Committee of the American Society for Reproductive Medicine. Subclinical hypothyroidism in the infertile female population: a guideline. Fertil Steril. 2015;104(3):545-553. https://doi.org/10.1016/j.fertnstert.2015.05.028.
  6. Vissenberg R, Manders VD, Mastenbroek S, et al. Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Hum Reprod Update. 2015;21(3):378-387. https://doi.org/10.1093/humupd/dmv004.
  7. Korevaar TIM, Minguez-Alarcon L, Messerlian C, et al. Association of thyroid function and autoimmunity with ovarian reserve in women seeking infertility care. Thyroid. 2018;28(10):1349-1358. https://doi.org/10.1089/thy.2017.0582.
  8. Poppe K, Velkeniers B, Glinoer D. Thyroid disease and female reproduction. Clin Endocrinol (Oxf). 2007;66(3):309-321. https://doi.org/10.1111/j.1365-2265.2007.02752.x.
  9. Maraka S, Ospina NM, OʼKeeffe DT, et al. Subclinical hypothyroidism in pregnancy: a systematic review and meta-analysis. Thyroid. 2016;26(4):580-590. https://doi.org/10.1089/thy.2015.0418.
  10. Aghajanova L, Lindeberg M, Carlsson IB, et al. Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod Bio Med Online. 2009;18(3):337-347. https://doi.org/10.1016/s1472-6483(10)60091-0.
  11. Wakim AN, Polizotto SL, Buffo MJ, et al. Thyroid hormones in human follicular fluid and thyroid hormone receptors in human granulosa cells. Fertil Steril. 1993;59(6):1187-1190. https://doi.org/10.1016/s0015-0282(16)55974-3.
  12. Xia G. Interactions of thyroid hormone and FSH in the regulation of rat granulosa cell apoptosis. Front Biosci. 2011;E3(4):1401-1413. https://doi.org/10.2741/e342.
  13. Zhang C, Wang X, Wang Z, et al. Effect of different culture systems and 3, 5, 3’-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice. PLoS One. 2013;8(4):e61947. https://doi.org/10.1371/journal.pone.0061947.
  14. Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev. 2010;31(5):702-755. https://doi.org/10.1210/er.2009-0041.
  15. Fedail JS, Zheng K, Wei Q, et al. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats. Endocrine. 2014;46(3):594-604. https://doi.org/10.1007/s12020-013-0092-y.
  16. Rae MT, Gubbay O, Kostogiannou A, et al. Thyroid hormone signaling in human ovarian surface epithelial cells. J Clin Endocrinol Metab. 2007;92(1):322-327. https://doi.org/10.1210/jc.2006-1522.
  17. Cecconi S, Rucci N, Scaldaferri ML, et al. Thyroid hormone effects on mouse oocyte maturation and granulosa cell aromatase activity. Endocrinology. 1999;140(4):1783-1788. https://doi.org/10.1210/endo.140.4.6635.
  18. Edassery SL, Shatavi SV, Kunkel JP, et al. Autoantigens in ovarian autoimmunity associated with unexplained infertility and premature ovarian failure. Fertil Steril. 2010;94(7):2636-2641. https://doi.org/10.1016/j.fertnstert.2010.04.012.
  19. Monteleone P, Parrini D, Faviana P, et al. Female infertility related to thyroid autoimmunity: the ovarian follicle hypothesis. Am J Reprod Immunol. 2011;66(2):108-114. https://doi.org/10.1111/j.1600-0897.2010.00961.x.
  20. Chen CW, Huang YL, Tzeng CR, et al. Idiopathic low ovarian reserve is associated with more frequent positive thyroid peroxidase antibodies. Thyroid. 2017;27(9):1194-1200. https://doi.org/10.1089/thy.2017.0139.
  21. Michalakis KG, Mesen TB, Brayboy LM, et al. Subclinical elevations of thyroid-stimulating hormone and assisted reproductive technology outcomes. Fertil Steril. 2011;95(8):2634-2637. https://doi.org/10.1016/j.fertnstert.2011.02.056.
  22. Caccavo D, Pellegrino NM, Nardelli C, et al. Anti-laminin-1 antibodies in serum and follicular fluid of women with Hashimotoʼs thyroiditis undergoing in vitro fertilization. Int J Immunopathol Pharmacol. 2016;29(2):280-287. https://doi.org/10.1177/0394632015627281.
  23. Weghofer A, Himaya E, Kushnir VA, et al. The impact of thyroid function and thyroid autoimmunity on embryo quality in women with low functional ovarian reserve: a case-control study. Reprod Biol Endocrinol. 2015;13:43. https://doi.org/10.1186/s12958-015-0041-0.
  24. Kilic S, Tasdemir N, Yilmaz N, et al. The effect of anti-thyroid antibodies on endometrial volume, embryo grade and IVF outcome. Gynecol Endocrinol. 2008;24(11):649-655. https://doi.org/10.1080/09513590802531112.
  25. Matalon ST, Blank M, Levy Y, et al. The pathogenic role of anti-thyroglobulin antibody on pregnancy: evidence from an active immunization model in mice. Hum Reprod. 2003;18(5):1094-1099. https://doi.org/10.1093/humrep/deg210.
  26. Miko E, Meggyes M, Doba K, et al. Characteristics of peripheral blood NK and NKT-like cells in euthyroid and subclinical hypothyroid women with thyroid autoimmunity experiencing reproductive failure. J Reprod Immunol. 2017;124:62-70. https://doi.org/10.1016/j.jri.2017.09.008.
  27. Medenica S, Garalejic E, Arsic B, et al. Follicular fluid thyroid autoantibodies, thyrotropin, free thyroxine levels and assisted reproductive technology outcome. PLoS One. 2018;13(10):e0206652. https://doi.org/10.1371/journal.pone.0206652.
  28. Zhong YP, Ying Y, Wu HT, et al. Relationship between antithyroid antibody and pregnancy outcome following in vitro fertilization and embryo transfer. Int J Med Sci. 2012;9(2):121-125. https://doi.org/10.7150/ijms.3467.
  29. Busnelli A, Paffoni A, Fedele L, Somigliana E. The impact of thyroid autoimmunity on IVF/ICSI outcome: a systematic review and meta-analysis. Hum Reprod Update. 2016;22(6):793-794. https://doi.org/10.1093/humupd/dmw034.
  30. Karacan M, Alwaeely F, Cebi Z, et al. Effect of antithyroid antibodies on ICSI outcome in antiphospholipid antibody-negative euthyroid women. Reprod Biomed Online. 2013;27(4):376-380. https://doi.org/10.1016/j.rbmo.2013.07.002.
  31. Lukaszuk K, Kunicki M, Kulwikowska P, et al. The impact of the presence of antithyroid antibodies on pregnancy outcome following intracytoplasmatic sperm injection-ICSI and embryo transfer in women with normal thyreotropine levels. J Endocrinol Invest. 2015;38(12):1335-1343. https://doi.org/10.1007/s40618-015-0377-5.
  32. Sakar MN, Unal A, Atay AE, et al. Is there an effect of thyroid autoimmunity on the outcomes of assisted reproduction? J Obstet Gynaecol. 2016;36(2):213-217. https://doi.org/10.3109/01443615.2015.1049253.
  33. Tan S, Dieterle S, Pechlavanis S, et al. Thyroid autoantibodies per se do not impair intracytoplasmic sperm injection outcome in euthyroid healthy women. Eur J Endocrinol. 2014;170(4):495-500. https://doi.org/10.1530/EJE-13-0790.
  34. Bussen S, Steck T. Thyroid autoantibodies in euthyroid non-pregnant women with recurrent spontaneous abortions. Hum Reprod. 1995;10(11):2938-2940. https://doi.org/10.1093/oxfordjournals.humrep.a135823.
  35. Benhadi N, Wiersinga WM, Reitsma JB, et al. Higher maternal TSH levels in pregnancy are associated with increased risk for miscarriage, fetal or neonatal death. Eur J Endocrinol. 2009;160(6):985-991. https://doi.org/10.1530/EJE-08-0953.
  36. Thangaratinam S, Tan A, Knox E, et al. Association between thyroid autoantibodies and miscarriage and preterm birth: meta-analysis of evidence. BMJ. 2011;342:d2616. https://doi.org/10.1136/bmj.d2616.
  37. Unuane D, Velkeniers B, Bravenboer B, et al. Impact of thyroid autoimmunity in euthyroid women on live birth rate after IUI. Hum Reprod. 2017;32(4):915-922. https://doi.org/10.1093/humrep/dex033.
  38. Negro R, Mangieri T, Coppola L, et al. Levothyroxine treatment in thyroid peroxidase antibody-positive women undergoing assisted reproduction technologies: a prospective study. Hum Reprod. 2005;20(6):1529-1533. https://doi.org/10.1093/humrep/deh843.
  39. Abdel Rahman AH, Aly Abbassy H, Abbassy AA. Improved in vitro fertilization outcomes after treatment of subclinical hypothyroidism in infertile women. Endocr Pract. 2010;16(5):792-797. https://doi.org/10.4158/EP09365.OR.
  40. Kim CH, Ahn JW, Kang SP, et al. Effect of levothyroxine treatment on in vitro fertilization and pregnancy outcome in infertile women with subclinical hypothyroidism undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2011;95(5):1650-1654. https://doi.org/10.1016/j.fertnstert.2010.12.004.
  41. Velkeniers B, Van Meerhaeghe A, Poppe K, et al. Levothyroxine treatment and pregnancy outcome in women with subclinical hypothyroidism undergoing assisted reproduction technologies: systematic review and meta-analysis of RCTs. Hum Reprod Update. 2013;19(3):251-258. https://doi.org/10.1093/humupd/dms052.
  42. Wang H, Gao H, Chi H, et al. Effect of levothyroxine on miscarriage among women with normal thyroid function and thyroid autoimmunity undergoing in vitro fertilization and embryo transfer: a randomized clinical trial. JAMA. 2017;318(22):2190-2198. https://doi.org/10.1001/jama.2017.18249.
  43. Rao M, Zeng Z, Zhao S, Tang L. Effect of levothyroxine supplementation on pregnancy outcomes in women with subclinical hypothyroidism and thyroid autoimmuneity undergoing in vitro fertilization/intracytoplasmic sperm injection: an updated meta-analysis of randomized controlled trials. Reprod Biol Endocrinol. 2018;16(1):92. https://doi.org/10.1186/s12958-018-0410-6.
  44. Revelli A, Casano S, Piane LD, et al. A retrospective study on IVF outcome in euthyroid patients with anti-thyroid antibodies: effects of levothyroxine, acetyl-salicylic acid and prednisolone adjuvant treatments. Reprod Biol Endocrinol. 2009;7:137. https://doi.org/10.1186/1477-7827-7-137.
  45. Litwicka K, Arrivi C, Varricchio MT, et al. In women with thyroid autoimmunity, does low-dose prednisolone administration, compared with no adjuvant therapy, improve in vitro fertilization clinical results? J Obstet Gynaecol Res. 2015;41(5):722-728. https://doi.org/10.1111/jog.12615.
  46. Alexander EK, Pearce EN, Brent GA, et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid. 2017;27(3):315-389. https://doi.org/10.1089/thy.2016.0457.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Algorithm for the examination and management of women in preparation for IVF / ICSI. ТТГ, thyroid-stimulating hormone; АИТ, autoimmune thyroiditis; АТ-ТПО, autoantibodies against thyroid peroxidase; АТ-ТГ, antibodies against thyroglobulin; 1 measure only in case of ovarian causes or idiopathic infertility; 2 when a choice has to be made, measure autoantibodies against thyroid peroxidase; 3 or above institutional cut-off; 4 dose depending on baseline thyroid-stimulating hormone level; 5 thyroid-stimulating hormone target < 2,5 mIU/L

Download (261KB)

Copyright (c) 2019 Safaryan G.K., Gzgzyan A.M., Dzhemlikhanova L.K., Niauri D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».