Skin microbiota in women of reproductive age in norm and androgen-dependent dermatoses

Cover Page


Cite item

Full Text

Abstract

The skin is the largest organ of the human body and is colonized by divergent microorganisms, with a majority of them being harmless and even helpful for humans. The development of molecular methods for the identification of microorganisms has led to a conception that the skin microflora is greatly diverse and variable. Innate and adaptive immune responses can change the microbiota, and, on the other hand, the microbiota is involved in an immune response. The degree of colonization of the skin by different microorganisms varies greatly depending on the body sites, as well as endogenous and exogenous factors. There are significant gender differences in skin structure and physiology, which is substantially influenced by sex hormones. The investigation of the skin microbial component in androgen-dependent dermatoses, such as acne and seborrheic dermatitis, will contribute to understanding the pathogenic mechanisms of these diseases and to developing effective methods of therapy.

About the authors

Nadezda E. Vorobyova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Author for correspondence.
Email: sergiognezdo@yandex.ru

MD, PhD, Researcher. The Department of Endocrinology of Reproduction

Russian Federation, Saint Petersburg

Elena V. Shipitsyna

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; Saint Petersburg State Pediatric Medical University

Email: shipitsyna@inbox.ru

PhD, DSci (Biology), Leading Researcher.  The Laboratory of Microbiology; Professor. The Department of Clinical Laboratory Diagnostics

Russian Federation, Saint Petersburg

Alevtina M. Savicheva

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; Saint Petersburg State Pediatric Medical University

Email: savitcheva@mail.ru

MD, PhD, DSci (Medicine), Professor, Honoured Scholar of the Russian Federation, the Head of the Laboratory of Microbiology; the Head of the Department of Clinical Laboratory Diagnostics

Russian Federation, Saint Petersburg

References

  1. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442-455. https://doi.org/10.1111/j.1365-2133.2008.08437.x.
  2. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244-253. https://doi.org/10.1038/nrmicro2537.
  3. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet. 2002;3(3):199-209. https://doi.org/10.1038/nrg758.
  4. Kippenberger S, Havlicek J, Bernd A, et al. ʽNosing Aroundʼ the human skin: what information is concealed in skin odour? Exp Dermatol. 2012;21(9):655-659. https://doi.org/10.1111/j.1600-0625.2012.01545.x.
  5. Natsch A, Gfeller H, Gygax P, et al. A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla. J Biol Chem. 2003;278(8):5718-5727. https://doi.org/10.1074/jbc.M210142200.
  6. Bruggemann H, Henne A, Hoster F, et al. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science. 2004;305(5684):671-673. https://doi.org/10.1126/science.1100330.
  7. Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29(1):3-14. https://doi.org/10.1007/s00281-007-0060-9.
  8. Dréno B. What is new in the pathophysiology of acne, an overview. J Eur Acad Dermatol Venereol. 2017;31:8-12. https://doi.org/10.1111/jdv.14374.
  9. Shu M, Wang Y, Yu J, et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 2013;8(2):e55380. https://doi.org/10.1371/journal.pone.0055380.
  10. Skabytska Y, Biedermann T. Staphylococcus epidermidis sets things right again. J Invest Dermatol. 2016;136(3):559-560. https://doi.org/10.1016/j.jid.2015.11.016.
  11. Gao Z, Perez-Perez GI, Chen Y, Blaser MJ. Quantitation of major human cutaneous bacterial and fungal populations. J Clin Microbiol. 2010;48(10):3575-3581. https://doi.org/10.1128/JCM.00597-10.
  12. Elston DM. Demodex mites: facts and controversies. Clin Dermatol. 2010;28(5):502-504. https://doi.org/10.1016/j.clindermatol.2010.03.006.
  13. Grice EA, Kong HH, Renaud G, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18(7):1043-1050. https://doi.org/10.1101/gr.075549.107.
  14. Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190-1192. https://doi.org/10.1126/science.1171700.
  15. Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694-1697. https://doi.org/10.1126/science.1177486.
  16. Kwaszewska A, Sobis-Glinkowska M, Szewczyk EM. Cohabitation — relationships of corynebacteria and staphylococci on human skin. Folia Microbiol (Praha). 2014;59(6):495-502. https://doi.org/10.1007/s12223-014-0326-2.
  17. Decréau RA, Marson CM, Smith KE, Behan JM. Production of malodorous steroids from androsta-5,16-dienes and androsta-4,16-dienes by Corynebacteria and other human axillary bacteria. J Steroid Biochem Mol Biol. 2003;87(4-5):327-336. https://doi.org/10.1016/j.jsbmb.2003.09.005.
  18. Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367-370. https://doi.org/10.1038/nature12171.
  19. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971-11975. https://doi.org/10.1073/pnas.1002601107.
  20. Giacomoni PU, Mammone T, Teri M. Gender-linked differences in human skin. J Dermatol Sci. 2009;55(3):144-149. https://doi.org/10.1016/j.jdermsci.2009.06.001.
  21. Borkowski AW, Gallo RL. The coordinated response of the physical and antimicrobial peptide barriers of the skin. J Invest Dermatol. 2011;131(2):285-287. https://doi.org/10.1038/jid.2010.360.
  22. Braff MH, Bardan A, Nizet V, Gallo RL. Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol. 2005;125(1):9-13. https://doi.org/10.1111/j.0022-202X.2004.23587.x.
  23. Strober W. Epithelial cells pay a Toll for protection. Nat Med. 2004;10(9):898-900. https://doi.org/10.1038/nm0904-898.
  24. Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol. 2003;24(7):358-363. https://doi.org/10.1016/S1471-4906(03)00139-X.
  25. Cogen AL, Yamasaki K, Muto J, et al. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 2010;5(1):e8557. https://doi.org/10.1371/journal.pone.0008557.
  26. Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15(12):1377-1382. https://doi.org/10.1038/nm.2062.
  27. Гунина Н.В., Масюкова С.А., Пищулин А.А. Роль половых стероидных гормонов в патогенезе акне // Экспериментальная и клиническая дерматокосметология. — 2005. — № 5. — C. 55–62. [Gunina NV, Masyukova SA, Pishchulin AA. Rol’ polovykh steroidnykh gormonov v patogeneze akne. Eksperimental’naya i klinicheskaya dermatokosmetologiya. 2005;(5):55-62. (In Russ.)]
  28. Wiegratz I, Kuhl H. Managing cutaneous manifestations of hyperandrogenic disorders. Treat Endocrinol. 2002;1(6):373-386. https://doi.org/10.2165/00024677-200201060-00003.
  29. Knaggs HE, Wood EJ, Rizer RL, Mills OH. Post-adolescent acne. Int J Cosmet Sci. 2004;26(3):129-138. https://doi.org/10.1111/j.1467-2494.2004.00210.x.
  30. Perkins AC, Maglione J, Hillebrand GG, et al. Acne vulgaris in women: prevalence across the life span. J Womens Health (Larchmt). 2012;21(2):223-230. https://doi.org/10.1089/jwh.2010.2722.
  31. Kim GK, Michaels BB. Post-adolescent acne in women: more common and more clinical considerations. J Drugs Dermatol. 2012;11(6):708-713.
  32. Zouboulis CC, Eady A, Philpott M, et al. What is the pathogenesis of acne? Exp Dermatol. 2005;14(2):143-152. https://doi.org/10.1111/j.0906-6705.2005.0285a.x.
  33. Preneau S, Dreno B. Female acne — a different subtype of teenager acne? J Eur Acad Dermatol Venereol. 2012;26(3):277-282. https://doi.org/10.1111/j.1468-3083.2011.04214.x.
  34. Azziz R, Sanchez LA, Knochenhauer ES, et al. Androgen excess in women: experience with over 1000 consecutive patients. J Clin Endocrinol Metab. 2004;89(2):453-462. https://doi.org/10.1210/jc.2003-031122.
  35. Karrer-Voegeli S, Rey F, Reymond MJ, et al. Androgen dependence of hirsutism, acne, and alopecia in women: retrospective analysis of 228 patients investigated for hyperandrogenism. Medicine (Baltimore). 2009;88(1):32-45. https://doi.org/10.1097/md.0b013e3181946a2c.
  36. Bojar RA, Holland KT. Acne and Propionibacterium acnes. Clin Dermatol. 2004;22(5):375-379. https://doi.org/10.1016/j.clindermatol.2004.03.005.
  37. Dessinioti C, Katsambas AD. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol. 2010;28(1):2-7. https://doi.org/10.1016/ j.clindermatol.2009.03.012.
  38. da Cunha MG, Fonseca FL, Machado CD. Androgenic hormone profile of adult women with acne. Dermatology. 2013;226(2):167-171. https://doi.org/10.1159/000347196.
  39. Gupta AK, Batra R, Bluhm R, et al. Skin diseases associated with Malassezia species. J Am Acad Dermatol. 2004;51(5):785-798. https://doi.org/10.1016/j.jaad.2003.12.034.
  40. Kim SY, Kim SH, Kim SN, et al. Isolation and identification of Malassezia species from Chinese and Korean patients with seborrheic dermatitis and in vitro studies on their bioactivity on sebaceous lipids and IL-8 production. Mycoses. 2016;59(5):274-280. https://doi.org/10.1111/myc.12456.
  41. Gaitanis G, Velegraki A, Mayser P, Bassukas ID. Skin diseases associated with Malassezia yeasts: facts and controversies. Clin Dermatol. 2013;31(4):455-463. https://doi.org/10.1016/j.clindermatol.2013.01.012.
  42. Okokon EO, Verbeek JH, Ruotsalainen JH, et al. Topical antifungals for seborrhoeic dermatitis. 2015. https://doi.org/10.1002/14651858.CD008138.pub2.
  43. DeAngelis YM, Gemmer CM, Kaczvinsky JR, et al. Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J Investig Dermatol Symp Proc. 2005;10(3):295-297. https://doi.org/10.1111/j.1087-0024.2005.10119.x.
  44. Dawson TL, Jr. Malassezia globosa and restricta: breakthrough understanding of the etiology and treatment of dandruff and seborrheic dermatitis through whole-genome analysis. J Investig Dermatol Symp Proc. 2007;12(2):15-19. https://doi.org/10.1038/sj.jidsymp.5650049.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Vorobyova N.E., Shipitsyna E.V., Savicheva A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».