Механизмы повреждения нервной системы при задержке роста плода
- Авторы: Николаенков И.П.1, Шакалис Д.В.2,3, Судаков Д.С.1,4
-
Учреждения:
- Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
- Санкт-Петербургский государственный педиатрический медицинский университет
- Перинатальный центр, Ленинградская областная клиническая больница
- Северо-Западный государственный медицинский университет им. И.И. Мечникова
- Выпуск: Том 73, № 1 (2024)
- Страницы: 125-136
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/jowd/article/view/254321
- DOI: https://doi.org/10.17816/JOWD501748
- ID: 254321
Цитировать
Аннотация
Обзор литературы посвящен анализу современных данных о механизмах повреждения нервной системы при задержке роста плода. Одной из ключевых причин перинатальных заболеваний и смертей в экономически развитых странах является задержка роста плода. В ряде случаев это состояние ассоциировано с поражением нервной системы плода, последствия которого могут сохраняться на протяжении всей жизни. Разработка патогенетически оправданной терапии задержки роста плода в период беременности позволит существенно снизить детские смертность, заболеваемость и инвалидизацию, а также финансовую нагрузку на систему здравоохранения и социальные институты.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Игорь Павлович Николаенков
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
Email: nikolaenkov_igor@mail.ru
ORCID iD: 0000-0003-2780-0887
канд. мед. наук
Россия, Санкт-ПетербургДмитрий Валерьевич Шакалис
Санкт-Петербургский государственный педиатрический медицинский университет; Перинатальный центр, Ленинградская областная клиническая больница
Email: shakalisdoc@gmail.com
ORCID iD: 0009-0002-7876-365X
MD
Россия, Санкт-Петербург; Санкт-ПетербургДмитрий Сергеевич Судаков
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта; Северо-Западный государственный медицинский университет им. И.И. Мечникова
Автор, ответственный за переписку.
Email: suddakovv@yandex.ru
ORCID iD: 0000-0002-5270-0397
канд. мед. наук
Россия, Санкт-Петербург; Санкт-ПетербургСписок литературы
- Miller S.L., Huppi P.S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome // J Physiol. 2016. Vol. 594, N. 4. P. 807–823. doi: 10.1113/JP271402.
- Audette M.C., Kingdom J.C. Screening for fetal growth restriction and placental insufficiency // Semin Fetal Neonatal Med. 2018. Vol. 23, N. 2. P. 119–125. doi: 10.1016/j.siny.2017.11.004
- Bruin C., Damhuis S., Gordijn S., et al. Evaluation and management of suspected fetal growth restriction // Obstet Gynecol Clin North Am. 2021. Vol. 48, N. 2. P. 371–385. doi: 10.1016/j.ogc.2021.02.007
- Игнатко И.В., Богомазова И.М., Карданова М.А. Современные представления о диагностике и прогнозировании задержки роста плода // Журнал акушерства и женских болезней. 2023. Т. 72, № 3. С. 65–76. EDN: JAVPCA doi: 10.17816/JOWD344442
- ООО «Российское общество акушеров-гинекологов». Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). Клинические рекомендации. 2022. Режим доступа: https://roag-portal.ru/recommendations_obstetrics. Дата обращения: 10.07.2023.
- Morales-Roselló J., Khalil A., Morlando M. et al. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term // Ultrasound Obstet Gynecol. 2014. Vol. 43, N. 3. P. 303–310. doi: 10.1002/uog.13319
- Prior T., Paramasivam G., Bennett P., et al. Are fetuses that fail to achieve their growth potential at increased risk of intrapartum compromise? // Ultrasound Obstet Gynecol. 2015. Vol. 46, N. 4. P. 460–464. doi: 10.1002/uog.14758
- Poon L.C., Tan M.Y., Yerlikaya G., et al. Birth weight in live births and stillbirths // Ultrasound Obstet Gynecol. 2016. Vol. 48, N. 5. P. 602–606. doi: 10.1002/uog.17287
- Bligh L.N., Flatley C.J., Kumar S. Reduced growth velocity at term is associated with adverse neonatal outcomes in non-small for gestational age infants // Eur J Obstet Gynecol Reprod Biol. 2019. Vol. 240. P. 125–129. doi: 10.1016/j.ejogrb.2019.06.026
- Gordijn S.J., Beune I.M., Thilaganathan B., et al. Consensus definition of fetal growth restriction: a Delphi procedure // Ultrasound Obstet Gynecol. 2016. Vol. 48, N. 3. P. 333–339. doi: 10.1002/uog.15884
- Lees C.C., Stampalija T., Baschat A., et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction // Ultrasound Obstet Gynecol. 2020. Vol. 56, N. 2. P. 298–312. doi: 10.1002/uog.22134
- Salomon L.J., Alfirevic Z., Da Silva Costa F., et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth // Ultrasound Obstet Gynecol. 2019. Vol. 53, N. 6. P. 715–723. doi: 10.1002/uog.20272
- Molina L.C.G., Odibo L., Zientara S., et al. Validation of Delphi procedure consensus criteria for defining fetal growth restriction // Ultrasound Obstet Gynecol. 2020. Vol. 56, N. 1. P. 61–66. doi: 10.1002/uog.20854
- Jarvis S., Glinianaia S.V., Torrioli M.G., et al.; Surveillance of cerebral palsy in europe (scpe) collaboration of european cerebral palsy registers. cerebral palsy and intrauterine growth in single births: european collaborative study // Lancet. 2003. Vol. 362. N. 9390. P. 1106–1111. doi: 10.1016/S0140-6736(03)14466-2
- Blair E.M., Nelson K.B. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation // Am J Obstet Gynecol. 2015. Vol. 212, N. 4. P. 520.e1–520.e7. doi: 10.1016/j.ajog.2014.10.1103
- Jacobsson B., Ahlin K., Francis A., et al. Cerebral palsy and restricted growth status at birth: population-based case-control study // BJOG. 2008. Vol. 115, N. 10. P. 1250–1255. doi: 10.1111/j.1471-0528.2008.01827.x
- Guellec I., Lapillonne A., Marret S., et al.; Étude Épidémiologique sur les Petits Âges Gestationnels (EPIPAGE; [Epidemiological Study on Small Gestational Ages]) Study Group. Effect of Intra- and Extrauterine Growth on Long-Term Neurologic Outcomes of Very Preterm Infants // J Pediatr. 2016. Vol. 175. P. 93–99.e1. doi: 10.1016/j.jpeds.2016.05.027
- Cordero L., Franco A., Joy S.D., et al. Monochorionic diamniotic infants without twin-to-twin transfusion syndrome // J Perinatol. 2005. Vol. 25, N. 12. P. 753–758. doi: 10.1038/sj.jp.7211405
- Edmonds C.J., Isaacs E.B., Cole T.J., et al. The effect of intrauterine growth on verbal IQ scores in childhood: a study of monozygotic twins // Pediatrics. 2010. Vol. 126, N. 5. P. e1095–e1101. doi: 10.1542/peds.2008-3684
- Baschat A.A. Neurodevelopment after fetal growth restriction // Fetal Diagn Ther. 2014. Vol. 36, N. 2. P. 136–142. doi: 10.1159/000353631
- Olivier P., Baud O., Evrard P., et al. Prenatal ischemia and white matter damage in rats // J Neuropathol Exp Neurol. 2005. Vol. 64, N. 11. P. 998–1006. doi: 10.1097/01.jnen.0000187052.81889.57
- Olivier P., Baud O., Bouslama M., et al. Moderate growth restriction: deleterious and protective effects on white matter damage // Neurobiol Dis. 2007. Vol. 26, N. 1. P. 253–263. doi: 10.1016/j.nbd.2007.01.001
- Dubois J., Benders M., Borradori-Tolsa C., et al. Primary cortical folding in the human newborn: an early marker of later functional development // Brain. 2008. Vol. 131, Pt. 8. P. 2028–2041. doi: 10.1093/brain/awn137
- Samuelsen G.B., Pakkenberg B., Bogdanović N. et al. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants // Am J Obstet Gynecol. 2007. Vol. 197, N. 1. P. 56.e1–56.e7. doi: 10.1016/j.ajog.2007.02.011
- Fung C., Ke X., Brown A.S. et al. Uteroplacental insufficiency alters rat hippocampal cellular phenotype in conjunction with ErbB receptor expression // Pediatr Res. 2012. Vol. 72, N. 1. P. 2–9. doi: 10.1038/pr.2012.32
- Isaacs E.B., Lucas A., Chong W.K. Hippocampal volume and everyday memory in children of very low birth weight // Pediatr Res. 2000. Vol. 47, N. 6. P. 713–720. doi: 10.1203/00006450-200006000-00006
- Weng C., Huang L., Feng H., et al. Gestational chronic intermittent hypoxia induces hypertension, proteinuria, and fetal growth restriction in mice // Sleep Breath. 2022. Vol. 26, N. 4. P. 1661–1669. doi: 10.1007/s11325-021-02529-3
- Poudel R., McMillen I.C., Dunn S.L., et al. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus // Am J Physiol Regul Integr Comp Physiol. 2015. Vol. 308, N. 3. P. R151–R162. doi: 10.1152/ajpregu.00036.2014
- Flood K., Unterscheider J., Daly S., et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study // Am J Obstet Gynecol. 2014. Vol. 211, N. 3. P. 288.e1–288.e5. doi: 10.1016/j.ajog.2014.05.008
- Mone F., McConnell B., Thompson A., et al. Fetal umbilical artery Doppler pulsatility index and childhood neurocognitive outcome at 12 years // BMJ Open. 2016. Vol. 6, N. 6. doi: 10.1136/bmjopen-2015-008916
- Hernandez-Andrade E., Figueroa-Diesel H., Jansson T., et al. Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses // Ultrasound Obstet Gynecol. 2008. Vol. 32, N. 1. P. 71–76. doi: 10.1002/uog.5377
- Rees S., Harding R., Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain // Int J Dev Neurosci. 2011. Vol. 29, N. 6. P. 551–563. doi: 10.1016/j.ijdevneu.2011.04.004
- Favrais G., van de Looij Y., Fleiss B., et al. Systemic inflammation disrupts the developmental program of white matter // Ann Neurol. 2011. Vol. 70, N. 4. P. 550–565. doi: 10.1002/ana.22489
- Rideau Batista Novais A., Pham H., Van de Looij Y., et al. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction // Glia. 2016. Vol. 64, N. 12. P. 2306–2320. doi: 10.1002/glia.23079
- Campbell L.R., Pang Y., Ojeda N.B., et al. Intracerebral lipopolysaccharide induces neuroinflammatory change and augmented brain injury in growth-restricted neonatal rats // Pediatr Res. 2012. Vol. 71, N. 6. P. 645–652. doi: 10.1038/pr.2012.26
- Fleiss B., Gressens P. Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy? // Lancet Neurol. 2012. Vol. 11, N. 6. P. 556–566. doi: 10.1016/S1474-4422(12)70058-3
- Muniyappa R., Sowers J.R. Role of insulin resistance in endothelial dysfunction // Rev Endocr Metab Disord. 2013. Vol. 14, N 1. P. 5–12. doi: 10.1007/s11154-012-9229-1
- Кузьминых Т.У., Борисова В.Ю., Николаенков И.П., и др. Роль биологически активных молекул в развитии сократительной деятельности матки // Журнал акушерства и женских болезней. 2019. Т. 68, № 1. С. 21–27. EDN: ZABXXV doi: 10.17816/JOWD68121-27
- Мишарина Е.В., Бородина В.Л., Главнова О.Б., и др. Инсулинорезистентность и гиперандрогенемия // Журнал акушерства и женских болезней. 2016. Т. 65, № 1. C. 75–86. EDN: VVRVNL doi: 10.17816/JOWD65175-86
- Nestler J.E. Regulation of the aromatase activity of human placental cytotrophoblasts by insulin, insulin-like growth factor-I, and -II // J Steroid Biochem Mol Biol. 1993. Vol. 44, N. 4–6. P. 449–457. doi: 10.1016/0960-0760(93)90249-v
- Jobe S.O., Tyler C.T., Magness R.R. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction // Hypertension. 2013. Vol. 61, N. 2. P. 480–487. doi: 10.1161/HYPERTENSIONAHA.111.201624
- Berkane N., Liere P., Oudinet J.P., et al. From pregnancy to preeclampsia: a key role for estrogens // Endocr Rev. 2017. Vol. 38, N. 2. P. 123–144. doi: 10.1210/er.2016-1065
- Berkane N., Liere P., Lefevre G., et al. Abnormal steroidogenesis and aromatase activity in preeclampsia // Placenta. 2018. Vol. 69. P. 40–49. doi: 10.1016/j.placenta.2018.07.004
- Boucher J., Charalambous M., Zarse K., et al. Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes // Proc Natl Acad Sci USA. 2014. Vol. 111, N. 40. P. 14512–14517. doi: 10.1073/pnas.1415475111
- Leger J., Noel M., Limal J.M., et al. Growth factors and intrauterine growth retardation. II. Serum growth hormone, insulin-like growth factor (IGF) I, and IGF-binding protein 3 levels in children with intrauterine growth retardation compared with normal control subjects: prospective study from birth to two years of age. Study Group of IUGR // Pediatr Res. 1996. Vol. 40, N. 1. P. 101–107. doi: 10.1203/00006450-199607000-00018
- Godfrey K.M., Hales C.N., Osmond C., et al. Relation of cord plasma concentrations of proinsulin, 32–33 split proinsulin, insulin and C-peptide to placental weight and the baby’s size and proportions at birth // Early Hum Dev. 1996. Vol. 46, N. 1–2. P. 129–140. doi: 10.1016/0378-3782(96)01752-5
- Gicquel C., Le Bouc Y. Hormonal regulation of fetal growth // Horm Res. 2006. Vol. 65, N. 3 (suppl.). P. 28–33. doi: 10.1159/000091503
- Dyer A.H., Vahdatpour C., Sanfeliu A., et al. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity // Neuroscience. 2016. Vol. 325. P. 89–99. doi: 10.1016/j.neuroscience.2016.03.056
- Park S.E., Lawson M., Dantzer R., et al. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide // J Neuroinflammation. 2011. Vol. 8. P. 179. doi: 10.1186/1742-2094-8-179
- Pang Y., Zheng B., Campbell L.R., et al. IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain // Pediatr Res. 2010. Vol. 67, N. 6. P. 579–584. doi: 10.1203/PDR.0b013e3181dc240f
- Cai Z., Fan L.W., Lin S., et al. Intranasal administration of insulin-like growth factor-1 protects against lipopolysaccharide-induced injury in the developing rat brain // Neuroscience. 2011. Vol. 194. P. 195–207. doi: 10.1016/j.neuroscience.2011.08.003
- Lin S., Fan L.W., Rhodes P.G., et al. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats // Exp Neurol. 2009. Vol. 217, N. 2. P. 361–370. doi: 10.1016/j.expneurol.2009.03.021
- Wood T.L., Loladze V., Altieri S., et al. Delayed IGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage // Dev Neurosci. 2007. Vol. 29, N. 4–5. P. 302–310. doi: 10.1159/000105471
- Lopes C., Ribeiro M., Duarte A.I., et al. IGF-1 intranasal administration rescues Huntington’s disease phenotypes in YAC128 mice // Mol Neurobiol. 2014. Vol. 49, N. 3. P. 1126–1142. doi: 10.1007/s12035-013-8585-5
- Murphy V.E., Smith R., Giles W.B., et al. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus // Endocr Rev. 2006. Vol. 27, N. 2. P. 141–169. doi: 10.1210/er.2005-0011
- Gurpide E., Marks C., de Ziegler D., et al. Asymmetric release of estrone and estradiol derived from labeled precursors in perfused human placentas // Am J Obstet Gynecol. 1982. Vol. 144, N. 5. P. 551–555. doi: 10.1016/0002-9378(82)90226-5
- Wu L., Einstein M., Geissler W.M., et al. Expression cloning and characterization of human 17 beta-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20 alpha-hydroxysteroid dehydrogenase activity // J Biol Chem. 1993. Vol. 268, N. 17. P. 12964–12969. doi: 10.1016/s0021-9258(18)31480-7
- Miranda A., Sousa N. Maternal hormonal milieu influence on fetal brain development // Brain Behav. 2018. Vol. 8, N. 2. doi: 10.1002/brb3.920
- Xiao Q., Luo Y., Lv F., et al. Protective Effects of 17β-estradiol on hippocampal myelinated fibers in ovariectomized middle-aged rats // Neuroscience. 2018. Vol. 385. P. 143–153. doi: 10.1016/j.neuroscience.2018.06.006
- Cambiasso M.J., Colombo J.A., Carrer H.F. Differential effect of oestradiol and astroglia-conditioned media on the growth of hypothalamic neurons from male and female rat brains // Eur J Neurosci. 2000. Vol. 12, N. 7. P. 2291–2298. doi: 10.1046/j.1460-9568.2000.00120.x
- Pansiot J., Mairesse J., Baud O. Protecting the developing brain by 17β-estradiol // Oncotarget. 2017. Vol. 8, N. 6. P. 9011–9012. doi: 10.18632/oncotarget.14819
- McCarthy M.M. The two faces of estradiol: effects on the developing brain // Neuroscientist. 2009. Vol. 15, N. 6. P. 599–610. doi: 10.1177/1073858409340924
- Schumacher M., Hussain R., Gago N., et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair // Front Neurosci. 2012. Vol. 6. P. 10. doi: 10.3389/fnins.2012.00010
- Tsutsui K., Ukena K. Neurosteroids in the cerebellar Purkinje neuron and their actions (review) // Int J Mol Med. 1999. Vol. 4, N. 1. P. 49–56. doi: 10.3892/ijmm.4.1.49
- Luoma J.I., Kelley B.G., Mermelstein P.G. Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity // Steroids. 2011. Vol. 76, N. 9. P. 845–855. doi: 10.1016/j.steroids.2011.02.013
- Pluchino N., Russo M., Genazzani A.R. The fetal brain: role of progesterone and allopregnanolone // Horm Mol Biol Clin Investig. 2016. Vol. 27, N. 1. P. 29–34. doi: 10.1515/hmbci-2016-0020
- Nguyen P.N., Billiards S.S., Walker D.W., et al. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep // Pediatr Res. 2003. Vol. 53, N. 6. P. 956–964. doi: 10.1203/01.PDR.0000064905.64688.10
- Brunton P.J., Russell J.A., Hirst J.J. Allopregnanolone in the brain: protecting pregnancy and birth outcomes // Prog Neurobiol. 2014. Vol. 113. P. 106–136. doi: 10.1016/j.pneurobio.2013.08.005.
- Palliser H.K., Kelleher M.A., Tolcos M., et al. Effect of postnatal progesterone therapy following preterm birth on neurosteroid concentrations and cerebellar myelination in guinea pigs // J Dev Orig Health Dis. 2015. Vol. 6, N. 4. P. 350–361. doi: 10.1017/S2040174415001075
- Xiao G., Wei J., Yan W., et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial // Crit Care. 2008. Vol. 12, N. 2. P. R61. doi: 10.1186/cc6887
- Noorlander C.W., De Graan P.N., Middeldorp J., et al. Ontogeny of hippocampal corticosteroid receptors: effects of antenatal glucocorticoids in human and mouse // J Comp Neurol. 2006. Vol. 499, N. 6. P. 924–932. doi: 10.1002/cne.21162
- Anacker C., Cattaneo A., Luoni A., et al. Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis // Neuropsychopharmacology. 2013. Vol. 38, N. 5. P. 872–883. doi: 10.1038/npp.2012.253
- Economides D.L., Nicolaides K.H., Linton E.A., et al. Plasma cortisol and adrenocorticotropin in appropriate and small for gestational age fetuses // Fetal Ther. 1988. Vol. 3, N. 3. P. 158–164. doi: 10.1159/000263348
- Filiberto A.C., Maccani M.A., Koestler D., et al. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta // Epigenetics. 2011. Vol. 6, N. 5. P. 566–572. doi: 10.4161/epi.6.5.15236
- Ke X., Schober M.E., McKnight R.A., et al. Intrauterine growth retardation affects expression and epigenetic characteristics of the rat hippocampal glucocorticoid receptor gene // Physiol Genomics. 2010. Vol. 42, N. 2. P. 177–189. doi: 10.1152/physiolgenomics.00201.2009
- Gómez-González B., Escobar A. Prenatal stress alters microglial development and distribution in postnatal rat brain // Acta Neuropathol. 2010. Vol. 119, N. 3. P. 303–315. doi: 10.1007/s00401-009-0590-4
- Roque A., Ochoa-Zarzosa A., Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels // Brain Behav Immun. 2016. Vol. 55. P. 39–48. doi: 10.1016/j.bbi.2015.09.017
- Matthews S.G. Antenatal glucocorticoids and programming of the developing CNS // Pediatr Res. 2000. Vol. 47, N 3. P. 291–300. doi: 10.1203/00006450-200003000-00003
- Айламазян Э.К., Мозговая Е.В. Гестоз: теория и практика. Москва: МЕДпресс-информ, 2008. EDN: QLRQIV
- Николаенков И.П. Антимюллеров гормон в патогенезе синдрома поликистозных яичников: авотреф. дис. ... канд. мед. наук. Санкт-Петербург, 2014. Режим доступа: https://www.dissercat.com/content/antimyullerovgormon-v-patogeneze-sindroma-olikistoznykh-yaichnikov. Дата обращения: 04.02.2024. EDN: ZPMABL
- Acromite M.T., Mantzoros C.S., Leach R.E., et al. Androgens in preeclampsia // Am J Obstet Gynecol. 1999. Vol. 180, N. 1, Pt. 1. P. 60–63. doi: 10.1016/s0002-9378(99)70150-x
- Pepene C.E. Evidence for visfatin as an independent predictor of endothelial dysfunction in polycystic ovary syndrome // Clin Endocrinol. 2012. Vol. 76, N. 1. P. 119–125. doi: 10.1111/j.1365-2265.2011.04171.x
- Kanasaki M., Srivastava S.P., Yang F., et al. Deficiency in catechol-o-methyltransferase is linked to a disruption of glucose homeostasis in mice // Sci Rep. 2017. Vol. 7, N. 1. P. 7927. doi: 10.1038/s41598-017-08513-w
- Николаенков И.П., Кузьминых Т.У., Тарасова М.А., и др. Особенности течения беременности у пациенток с синдромом поликистозных яичников // Журнал акушерства и женских болезней. 2020. Т. 69, № 5. С. 105–112. EDN: HNEEAT doi: 10.17816/JOWD695105-112
- Sun M., Maliqueo M., Benrick A., et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring // Am J Physiol Endocrinol Metab. 2012. Vol. 303, N. 11. P. E1373–1385. doi: 10.1152/ajpendo.00421.2012
- Wixey J.A., Chand K.K., Pham L., et al. Therapeutic potential to reduce brain injury in growth restricted newborns // J Physiol. 2018. Vol. 596, N. 23. P. 5675–5686. doi: 10.1113/JP275428
Дополнительные файлы
