Anatomical and physiological aspects of the mutual influence of circulatory hypoxia of the myometrium and non-progressive labour
- Authors: Sudakov D.S.1,2, Nikolaenkov I.P.3, Dymarskaya Y.R.1, Kuznetsova A.A.1
-
Affiliations:
- North-Western State Medical University named after I.I. Mechnikov
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- Leningrad Regional Perinatal Center
- Issue: Vol 73, No 4 (2024)
- Pages: 119-134
- Section: Reviews
- URL: https://journal-vniispk.ru/jowd/article/view/268546
- DOI: https://doi.org/10.17816/JOWD623763
- ID: 268546
Cite item
Abstract
Non-progressive labour occurs in almost 10% of deliveries and is a main reason for unplanned cesarean sections and operative vaginal births using obstetric forceps or vacuum extraction. This article describes the morphological transformation of the myometrium and uterine blood vessels that occurs during pregnancy. It is shown that the myometrium inevitably experiences hypoxia at the microstructural level during each normal or pathological labour. We analyzed recent studies of the mutual influence of myometrial hypoxia and labour dystocia. Experimental and clinical studies showed relationship between the pH values and lactate levels determined in the myometrium on its contractility. Further research is justified, including the study of the pH and lactate values in amniotic fluid in patients with non-progressive labor. Finally, that will allow for clarifying the conditions and timing of labour stimulation with oxytocin and identifying a group of patients for whom oxytocin administration is contraindicated or hopeless.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitry S. Sudakov
North-Western State Medical University named after I.I. Mechnikov; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Author for correspondence.
Email: suddakovv@yandex.ru
ORCID iD: 0000-0002-5270-0397
SPIN-code: 6189-8705
MD, Cand. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgIgor P. Nikolaenkov
Leningrad Regional Perinatal Center
Email: nikolaenkov_igor@mail.ru
ORCID iD: 0000-0003-2780-0887
SPIN-code: 5571-4620
MD, Cand. Sci. (Medicine)
Russian Federation, GatchinaYulia R. Dymarskaya
North-Western State Medical University named after I.I. Mechnikov
Email: julia_dym@mail.ru
ORCID iD: 0000-0001-6027-6875
SPIN-code: 4195-3410
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgAnna A. Kuznetsova
North-Western State Medical University named after I.I. Mechnikov
Email: anika8820@mail.ru
ORCID iD: 0000-0002-6901-9004
SPIN-code: 9077-0209
Russian Federation, Saint Petersburg
References
- Béranger R, Chantry AA. Oxytocin administration during spontaneous labor: Guidelines for clinical practice. Chapter 1: Definition and characteristics of normal and abnormal labor. J Gynecol Obstet Hum Reprod. 2017;46(6):469–478. doi: 10.1016/j.jogoh.2017.04.011
- Selin L, Wennerholm UB, Jonsson M, et al. High-dose versus low-dose of oxytocin for labour augmentation: a randomised controlled trial. Women Birth. 2019;32(4):356–363. doi: 10.1016/j.wombi.2018.09.002
- Operative vaginal birth: ACOG Practice Bulletin, N 219. Obstet Gynecol. 2020;135(4):e149–e159. doi: 10.1097/AOG.0000000000003764
- Hofmeyr GJ, Singata-Madliki M. The second stage of labor. Best Pract Res Clin Obstet Gynaecol. 2020;67:53–64. doi: 10.1016/j.bpobgyn.2020.03.012
- Spong CY, Berghella V, Wenstrom KD, et al. Preventing the first cesarean delivery: summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, and American College of Obstetricians and Gynecologists Workshop. Obstet Gynecol. 2012;120(5):1181–1193. doi: 10.1097/aog.0b013e3182704880
- Savitskiy AG, Savitskiy GA. biomechanics of physiological labor contractions (myometral-hemodynamic concept) scientific review. Medical sciences. 2021;(6):41–53. EDN: DESNAO doi: 10.17513/srms.1216
- Romero R. A profile of Emanuel A. Friedman, MD, DMedSci. Am J Obstet Gynecol. 2016;215(4):413–414. doi: 10.1016/j.ajog.2016.07.034
- Friedman E. The graphic analysis of labor. Am J Obstet Gynecol. 1954;68(6):1568–1575. doi: 10.1016/0002-9378(54)90311-7
- Friedman EA. Primigravid labor; a graphicostatistical analysis. Obstet Gynecol. 1955;6(6):567–589. doi: 10.1097/00006250-195512000-00001
- Bezhenar VF, Novikov BN, Turlak AS. Professor Ilya Yakovlev (on the 120th anniversary). The Scientific Notes of IPP SPSMU. 2017;24(1):9–14. (In Russ.) EDN: YRMTJN doi: 10.24884/1607-4181-2017-24-1-9-14
- Yakovlev II. On the structure and physiology of the smooth muscles of the pregnant uterus. Obstetrics and Gynecology. 1965;(2):3–9. (In Russ.)
- Yakovlev II. Basic provisions on the function of the “giving birth” uterus. Obstetrics and gynecology. 1963;(5):3–8. (In Russ.)
- Savitskiy AG, Savitskiy GA. “Discoordination labors activity” — longstanding parascietific myth or obstetric reality? Children’s Medicine of the North-West. 2011;2(1):6–15. EDN: OZNJSF
- Zhelezova ME, Zephirova TP, Yagovkina NE, et al. The influence of duration of labor on perinatal outcomes. Practical medicine. 2017;(7):12–17. EDN: ZFCWWD
- Pachuliia OV, Khalenko VV, Shengeliia MO, et al. Biomechanisms of cervical remodeling and current approaches to maturity assessment. Journal of Obstetrics and Women’s diseases. 2023;72(1):81–95. EDN: SZDEIG doi: 10.17816/JOWD114934
- Young RC, Hession RO. Three-dimensional structure of the smooth muscle in the term-pregnant human uterus. Obstet Gynecol. 1999;93(1):94–99. doi: 10.1016/s0029-7844(98)00345-7
- Gilroy A, MacPherson B, Ross L, et al. Atlas of anatomy. Stuttgart: Thieme; 2012. 656 p.
- Krstic RV; Samusev RP, editor. Atlas of microscopic human anatomy: a textbook for higher education students. Moscow: World and Education; 2010. 608 p. EDN: QKSODN
- Young RC. Myocytes, myometrium, and uterine contractions. Ann NY Acad Sci. 2007;1101:72–84. doi: 10.1196/annals.1389.038
- Weiss S, Jaermann T, Schmid P, et al. Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(1):84–90. doi: 10.1002/ar.a.20274
- Tetlow RL, Richmond I, Manton DJ, et al. Histological analysis of the uterine junctional zone as seen by transvaginal ultrasound. Ultrasound Obstet Gynecol. 1999;14(3):188–193. doi: 10.1046/j.1469-0705.1999.14030188.x
- Benagiano G, Brosens I. Adenomyosis and endometriosis have a common origin. J Obstet Gynaecol India. 2011;61(2):146–152. doi: 10.1007/s13224-011-0030-y
- Mogilnaja GM, Simovonik AN. The junctional zone of the uterus and its predictors in the diagnosis of adenomyosis. Crimea Journal of Experimental and Clinical Medicine. 2018;8(1):55–60. EDN: UUXGVK
- Mogilnaya GM, Kutsenko II, Simovonik AN. The junctional zone of the uterus and adenomyosis. Journal of Anatomy and Histopathology. 2018;7(1):108–117. EDN: YTTOWW doi: 10.18499/2225-7357-2018-7-1-108-117
- Brosens I, Derwig I, Brosens J, et al. The enigmatic uterine junctional zone: the missing link between reproductive disorders and major obstetrical disorders? Hum Reprod. 2010;25(3):569–574. doi: 10.1093/humrep/dep474
- Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update. 2010;16(6):725–744. doi: 10.1093/humupd/dmq016
- Wray S, Prendergast C. The myometrium: from excitation to contractions and labour. Adv Exp Med Biol. 2019;1124:233–263. doi: 10.1007/978-981-13-5895-1_10
- Farrer-Brown G, Beilby JO, Tarbit MH. The blood supply of the uterus. 1. Arterial vasculature. J Obstet Gynaecol Br Commonw. 1970;77(8):673–681. doi: 10.1111/j.1471-0528.1970.tb03592.x
- Farrer-Brown G, Beilby JO, Tarbit MH. The blood supply of the uterus. 2. Venous pattern. J Obstet Gynaecol Br Commonw. 1970;77(8):682–689. doi: 10.1111/j.1471-0528.1970.tb03593.x
- Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263. doi: 10.1016/s0002-9378(16)33500-1
- Tolibova GX, Tral TG, Kogan IYu, et al. Endometrium. Atlas. Moscow: Status Praesens 2022. EDN: GMDUEO
- Tolibova GX, Tral TG, Kogan IYu, et al. Endometrium. Atlas. Moscow: Status Praesens, 2023. 248 p. (In Russ.) EDN: NPIEWV doi: 10.29039/978-5-907217-78-9
- Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939–958. doi: 10.1016/j.placenta.2005.12.006
- Osol G, Moore LG. Maternal uterine vascular remodeling during pregnancy. Microcirculation. 2014;21(1):38–47. doi: 10.1111/micc.12080
- Soares MJ, Chakraborty D, Kubota K, et al. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol. 2014;58(2–4):247–259. doi: 10.1387/ijdb.140083ms
- Burton GJ, Woods AW, Jauniaux E, et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–482. doi: 10.1016/j.placenta.2009.02.009
- Jaggar JH, Wellman GC, Heppner TJ, et al. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand. 1998;164(4):577–587. doi: 10.1046/j.1365-201X.1998.00462.x
- Rosenfeld CR, Roy T, DeSpain K, et al. Large-conductance Ca2+-dependent K+ channels regulate basal uteroplacental blood flow in ovine pregnancy. J Soc Gynecol Investig. 2005;12(6):402–408. doi: 10.1016/j.jsgi.2005.04.009
- Hu XQ, Song R, Romero M, et al. Pregnancy increases Ca2+ sparks/spontaneous transient outward currents and reduces uterine arterial myogenic tone. Hypertension. 2019;73(3):691–702. doi: 10.1161/HYPERTENSIONAHA.118.12484
- Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93(1):105–113. doi: 10.1093/bja/aeh163
- Wray S, Alruwaili M, Prendergast C. Hypoxia and reproductive health: hypoxia and labour. Reproduction. 2021;161(1):F67–F80. doi: 10.1530/REP-20-0327
- Jenkins HN, Rivera-Gonzalez O, Gibert Y, et al. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes Rev. 2020;21(12):e13086. doi: 10.1111/obr.13086
- Vanhoutte PM, Tang EH. Endothelium-dependent contractions: when a good guy turns bad! J Physiol. 2008;586(22):5295–5304. doi: 10.1113/jphysiol.2008.161430
- Faber-Swensson AP, O’Callaghan SP, Walters WA. Endothelial cell function enhancement in a late normal human pregnancy. Aust N Z J Obstet Gynaecol. 2004;44(6):525–529. doi: 10.1111/j.1479-828X.2004.00302.x
- Titov VN. Anatomical and functional basis of endothelium-dependent vasodilation, nitric oxide and endothelin. Russian Journal of Cardiology. 2008;(1):71–85. (In Russ.) EDN: IJVIIF
- Nelson SH, Steinsland OS, Wang Y, et al. Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy. Circ Res. 2000;87(5):406–411. doi: 10.1161/01.res.87.5.406
- Vanhoutte PM, Shimokawa H, Feletou M, et al. Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol (Oxf). 2017;219(1):22–96. doi: 10.1111/apha.12646
- Davies SC, Machin SJ. Prostacyclin (PGI2). Intensive Care Med. 1983; 9(2):49–52. doi: 10.1007/BF01699256
- Luksha L, Agewall S, Kublickiene K. Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis. 2009; 202(2):330–344. doi: 10.1016/j.atherosclerosis.2008.06.008
- Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011;109(11):1259–1268. doi: 10.1161/CIRCRESAHA.111.240242
- Prendergast C. Maternal phenotype: how does age, obesity and diabetes affect myometrial function? Curr Opin Physiol. 2020;13:108–116. doi: 10.1016/j.cophys.2019.10.016
- Ailamazyan EK, Kuzminykh TU. Evolution of views on operative delivery. Journal of Obstetrics and Women’s Diseases. 2022;71(6):97–105. EDN: EPUCIM doi: 10.17816/JOWD119829
- Al-Qahtani S, Heath A, Quenby S, et al. Diabetes is associated with impairment of uterine contractility and high Caesarean section rate. Diabetologia. 2012;55(2):489–498. doi: 10.1007/s00125-011-2371-6
- Chirayath HH, Wareing M, Taggart MJ, et al. Endothelial dysfunction in myometrial arteries of women with gestational diabetes. Diabetes Res Clin Pract. 2010;89(2):134–140. doi: 10.1016/j.diabres.2010.03.022
- Kapustin RV, Arzhanova ON, Sokolov DI, et al. Estimation of the plasma concentration of endothelin-1 and sicam-1 in pregnant women with gestational diabetes mellitus. Obstetrics and Gynecology. 2013;(5):36–41. EDN: QLHTBZ
- Hayward CE, Cowley EJ, Mills TA, et al. Maternal obesity impairs specific regulatory pathways in human myometrial arteries. Biol Reprod. 2014;90(3):65. doi: 10.1095/biolreprod.113.112623
- Prendergast C, Wray S. Human myometrial artery function and endothelial cell calcium signalling are reduced by obesity: can this contribute to poor labour outcomes? Acta Physiol (Oxf). 2019;227(4):e13341. doi: 10.1111/apha.13341
- Seryogina DS, Nikolayenkov IP, Kuzminykh TU. Obesity represents a strong pathogenetic link with the pathology of pregnancy and childbirth. Journal of Obstetrics and Women’s Diseases. 2020;69(2):73–82. EDN: LRLYCV doi: 10.17816/JOWD69273-82
- Acromite MT, Mantzoros CS, Leach RE, et al. Androgens in preeclampsia. Am J Obstet Gynecol. 1999;180(1):60–63. doi: 10.1016/s0002-9378(99)70150-x
- Pepene CE. Evidence for visfatin as an independent predictor of endothelial dysfunction in polycystic ovary syndrome. Clin Endocrinol (Oxf). 2012;76(1):119–125. doi: 10.1111/j.1365-2265.2011.04171.x
- Nikolayenkov IP, Kuzminykh TU, Tarasova MA, et al. Features of the course of pregnancy in women with polycystic ovary syndrome. Journal of Obstetrics and Women’s Diseases. 2020;69(5):105–112. EDN: HNEEAT doi: 10.17816/JOWD695105-112
- Lavrova OV, Shapovalova EA, Dymarskaya YR, et al. Operative delivery in pregnant women with asthma. Journal of Obstetrics and Women’s Diseases. 2019;68(4):19–26. EDN: PHGBRI doi: 10.17816/JOWD68419-26
- Andersen MR, Uldbjerg N, Stender S, et al. Maternal smoking and impaired endothelium-dependent nitric oxide-mediated relaxation of uterine small arteries in vitro. Am J Obstet Gynecol. 2011;204(2):177.e1–177.e1777. doi: 10.1016/j.ajog.2010.09.006
- Hu XQ, Xiao D, Zhu R, et al. Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries. Hypertension. 2012;60(1):214–222. doi: 10.1161/HYPERTENSIONAHA.112.196097
- Xiao D, Hu XQ, Huang X, et al. Chronic hypoxia during gestation enhances uterine arterial myogenic tone via heightened oxidative stress. PLoS One. 2013;8(9). doi: 10.1371/journal.pone.0073731
- Lye SJ, Ou C-W, Teoh T-G, et al. The molecular basis of labour and tocolysis. Fetal and Maternal Medicine Review. 1998;10(3):121–136. doi: 10.1017/S096553959800031X
- Beyer EC, Kistler J, Paul DL, et al. Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol. 1989;108(2):595–605. doi: 10.1083/jcb.108.2.595
- Hutchings G, Gevaert T, Deprest J, et al. Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells. Reprod Biol Endocrinol. 2008;6:43. doi: 10.1186/1477-7827-6-43
- Ermoshenko BG, Dorofeeva IV, Shubich MG. Structural and functional bases of coordination of contractile activity of the myometrium during childbirth (conducting system of the uterus). Russian Bulletin of Obstetrician-Gynecologist. (In Russ.) 2003;3(5):21–27. EDN: ZCAJFX
- Garfield RE, Sims S, Daniel EE. Gap junctions: their presence and necessity in myometrium during parturition. Science. 1977;198(4320):958–960. doi: 10.1126/science.929182
- Risek B, Guthrie S, Kumar N, et al. Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol. 1990;110(2):269–282. doi: 10.1083/jcb.110.2.269
- Meyer RA, Laird DW, Revel JP, et al. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol. 1992;119(1):179–189. doi: 10.1083/jcb.119.1.179
- Konovalov PV, Gorshkov AN, Ovsyannikov FA, et al. Remodeling of the myometrium with connective tissue dysplasia in women with uterine inertia. Translational medicine. 2015;(6):39–46. (In Russ.) EDN: VWHUHH
- Savitskiy AG, Savitskiy GA. Biomechanics of physiological labor contractions (the dominant version of the teaching). Medical sciences. 2021;(3):62–68. EDN: PDYJZE doi: 10.17513/srms.1192
- Lutton EJ, Lammers WJEP, James S, et al. Identification of uterine pacemaker regions at the myometrial-placental interface in the rat. J Physiol. 2018;596(14):2841–2852. doi: 10.1113/JP275688
- Shmigol AV, Eisner DA, Wray S. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J Physiol. 1998;511(Pt 3):803–811. doi: 10.1111/j.1469-7793.1998.803bg.x
- Mitchell JA, Lye SJ. Regulation of connexin43 expression by c-fos and c-jun in myometrial cells. Cell Commun Adhes. 2001;8(4–6):299–302. doi: 10.3109/15419060109080741
- Chwalisz K, Garfield RE. Regulation of the uterus and cervix during pregnancy and labor. Role of progesterone and nitric oxide. Ann NY Acad Sci. 1997;828:238–253. doi: 10.1111/j.1749-6632.1997.tb48545.x
- Challis JRG. Characteristics of parturition. In: Dugoff L, Louis J. Maternalfetal medicine: principles and practice. Philadelphia: Saunders Co.; 1998. P. 484–497.
- Kuzminykh TU, Borisova VY, Nikolayenkov IP, et al. Role of biologically active molecules in uterine contractile activity. Journal of Obstetrics and Women’s Diseases. 2019;68(1):21–27. EDN: ZABXXV doi: 10.17816/JOWD68121-27
- Larcombe-McDouall J, Buttell N, Harrison N, et al. In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle. J Physiol. 1999;518 (Pt 3):783–790. doi: 10.1111/j.1469-7793.1999.0783p.x
- Jones NW, Raine-Fenning NJ, Jayaprakasan K, et al. Changes in myometrial ‘perfusion’ during normal labor as visualized by three-dimensional power Doppler angiography. Ultrasound Obstet Gynecol. 2009;33(3):307–312. doi: 10.1002/uog.6303
- Sato M, Noguchi J, Mashima M, et al. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor. Placenta. 2016;45:32–36. doi: 10.1016/j.placenta.2016.06.018
- Alotaibi M, Arrowsmith S, Wray S. Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses. Proc Natl Acad Sci USA. 2015;112(31):9763–9768. doi: 10.1073/pnas.1503497112
- Duprat F, Lesage F, Fink M, et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997;16(17):5464–5471. doi: 10.1093/emboj/16.17.5464
- Shvetsova AA, Gaynullina DK, Tarasova OS. TASK-1 channels: functional role in arterial smooth muscle cells. Bulletin of Moscow University. Series 16. Biology. 2022;77(2):76–88. EDN: EHRSTY (In Russ.)
- Yuill K, Ashmole I, Stanfield PR. The selectivity filter of the tandem pore potassium channel TASK-1 and its pH-sensitivity and ionic selectivity. Pflugers Arch. 2004;448(1):63–69. doi: 10.1007/s00424-003-1218-5
- Morton MJ, O’Connell AD, Sivaprasadarao A, et al. Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and -2. Pflugers Arch. 2003;445(5):577–583. doi: 10.1007/s00424-002-0901-2
- Hong SJ, Kim BK, Shin DH, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314(20):2155–2163. doi: 10.1001/jama.2015.15454
- Kyeong KS, Hong SH, Kim YC, et al. Myometrial relaxation of mice via expression of two pore domain acid sensitive K(+) (TASK-2) channels. Korean J Physiol Pharmacol. 2016;20(5):547–556. doi: 10.4196/kjpp.2016.20.5.547
- Jones K, Shmygol A, Kupittayanant S, et al. Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes. Pflugers Arch. 2004;448(1):36–43. doi: 10.1007/s00424-003-1224-7
- Monir-Bishty E, Pierce SJ, Kupittayanant S, et al. The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium. BJOG. 2003;110(12):1050–1056.
- Bugg GJ, Riley MJ, Johnston TA, et al. Hypoxic inhibition of human myometrial contractions in vitro: implications for the regulation of parturition. Eur J Clin Invest. 2006;36(2):133–140. doi: 10.1111/j.1365-2362.2006.01600.x
- Badran M, Abuyassin B, Ayas N, et al. Intermittent hypoxia impairs uterine artery function in pregnant mice. J Physiol. 2019;597(10):2639–2650. doi: 10.1113/JP277775
- Gourdin MJ, Bree B, De Kock M. The impact of ischaemia-reperfusion on the blood vessel. Eur J Anaesthesiol. 2009;26(7):537–547. doi: 10.1097/EJA.0b013e328324b7c2
- Kirby LS, Kirby MA, Warren JW, et al. Increased innervation and ripening of the prepartum murine cervix. J Soc Gynecol Investig. 2005;12(8):578–585. doi: 10.1016/j.jsgi.2005.08.006
- Quenby S, Pierce SJ, Brigham S, et al. Dysfunctional labor and myometrial lactic acidosis. Obstet Gynecol. 2004;103(4):718–723. doi: 10.1097/01.AOG.0000118306.82556.43
- Wiberg-Itzel E, Pembe AB, Järnbert-Pettersson H, et al. Lactate in amniotic fluid: predictor of labor outcome in oxytocin-augmented primiparas’ deliveries. PLoS One. 2016;11(10):e0161546. doi: 10.1371/journal.pone.0161546
- Wiberg-Itzel E, Pembe AB, Wray S, et al. Level of lactate in amniotic fluid and its relation to the use of oxytocin and adverse neonatal outcome. Acta Obstet Gynecol Scand. 2014;93(1):80–85. doi: 10.1111/aogs.12261
Supplementary files
