The role of heat shock protein 90 in malignant neoplasms of the female reproductive system: diagnostic and therapeutic potential. A literature review

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The study of malignant neoplasms of the female reproductive system remains a crucial issue in modern oncology, requiring new approaches to diagnosis and treatment. One of the promising molecular targets for therapy is heat shock protein 90, which plays a key role in stabilizing oncoproteins, regulating cellular stress, and modulating signaling pathways. Its overexpression is associated with aggressive tumor growth, metastasis, reduced sensitivity to therapy, and poor prognosis.

This review analyzes publications that address the role of heat shock protein 90 in cervical, ovarian, and uterine cancer. An analysis of 3955 papers from PubMed/MEDLINE, 115 studies from eLibrary, and 2725 publications from Google Scholar was conducted, covering the period from the inception of these databases to August 2024. The findings indicate a significant impact of heat shock protein 90 on tumor progression, its ability to prevent apoptosis, and contribution to drug resistance.

Heat shock protein 90 inhibitors are being actively investigated as potential therapeutic agents to suppress the activity of this protein and induce tumor regression. Preclinical and clinical trials have demonstrated their efficacy in reducing tumor size and decreasing the risk of recurrence. However, the toxicity and selectivity of the inhibitors remain unresolved.

The development of monoclonal antibody-based medications targeting heat shock protein 90 is promising and may provide higher specificity and reduce adverse effects. Further studies are needed to optimize therapeutic efficacy, improve the selectivity and bioavailability of the inhibitors, and identify potential biomarkers of response to therapy.

作者简介

Irina Rvacheva

Rostov State Medical University

Email: lolemost@ro.ru
ORCID iD: 0009-0004-0909-3001
俄罗斯联邦, Rostov-on-Don

Dzhaminat Apatova

Rostov State Medical University

Email: apatova.jaminat@ya.ru
ORCID iD: 0009-0007-2077-247X
俄罗斯联邦, Rostov-on-Don

Laurita Movsesyan

Rostov State Medical University

Email: movsesyan.ll@mail.ru
ORCID iD: 0009-0001-6291-0806
俄罗斯联邦, Rostov-on-Don

Dmitry Yudin

Rostov State Medical University

Email: dmitryiyudinn@gmail.com
ORCID iD: 0009-0002-8293-9080
俄罗斯联邦, Rostov-on-Don

Diana Logvinova

Rostov State Medical University

Email: diana.logvinova2001@mail.ru
ORCID iD: 0009-0009-4458-7548
俄罗斯联邦, Rostov-on-Don

Milana Bichegkueva

Rostov State Medical University

Email: milanabichegkueva@gmail.com
ORCID iD: 0009-0001-9603-8454
俄罗斯联邦, Rostov-on-Don

Darya Deryabina

St. Petersburg State University

Email: dr.deryabina@mail.ru
ORCID iD: 0009-0007-0472-5198
俄罗斯联邦, Saint Petersburg

Alexandra Timakova

Pirogov Russian National Research Medical University

Email: alexandra.timackova@yandex.ru
ORCID iD: 0009-0008-5782-0364
俄罗斯联邦, Moscow

Darya Prikhodko

Pirogov Russian National Research Medical University

Email: sivaeva06111992@gmail.com
ORCID iD: 0009-0007-4100-236X
俄罗斯联邦, Moscow

Elizaveta Budalova

Children’s Polyclinic No. 58

Email: lizokaz@yandex.ru
ORCID iD: 0009-0004-5514-2820
俄罗斯联邦, Moscow

Aygun Alieva

Samara State Medical University

Email: aygun.alieva.0101@mail.ru
ORCID iD: 0009-0005-5110-2079
俄罗斯联邦, Samara

Alexandra Musina

Samara State Medical University

Email: alten_m@mail.ru
ORCID iD: 0009-0004-5040-7287
俄罗斯联邦, Samara

Georgy Davydov

Tula State University

编辑信件的主要联系方式.
Email: sapdvach1984@gmail.com
ORCID iD: 0009-0002-7157-0353
俄罗斯联邦, Tula

参考

  1. Blinov DV, Solopova AG, Achkasov EE, et al. Strengthening rehabilitation for patients with ovarian tumors: current approaches and future directions. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(2):303–316. EDN: DCAONY doi: 10.17749/2070-4909/farmakoekonomika.2023.196
  2. Kulieva GZ, Mkrtchyan LS, Krikunova LI, et al. Epidemiological aspects of the incidence and mortality of cervical cancer (literature review). Tumors of female reproductive system. 2023;19(3):77–84. EDN: ZISAVS doi: 10.17650/1994-4098-2023-19-3-77-84
  3. Sviridova NI, Tkachenko LV, Yakhontova MA, et al. Endometrial hyperplastic processes: modern approaches to diagnosis and treatment. Obstetrics, gynecology and reproduction. 2024;18(1):83–95. EDN: HZTXYX doi: 10.17749/2313-7347/ob.gyn.rep.2023.464
  4. Sokolenko AP, Poletaeva SV, Shestakova AD, et al. HRD-negative high-grade carcinoma of the ovary in BRCA2 pathogenic variant carrier. Siberian journal of oncology. 2024;23(2):139–146. EDN: BXRPOC doi: 10.21294/1814-4861-2024-23-2-139-146
  5. Zhao C, Tang X, Chen X, et al. Multifaceted carbonized metal-organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy. ACS Nano. 2024;18(27):17852–17868. EDN: VOIDMU doi: 10.1021/acsnano.4c04022
  6. Keyvani V, Riahi E, Yousefi M, et al. Gynecologic cancer, cancer stem cells, and possible targeted therapies. Front Pharmacol. 2022;13:823572. EDN: NFLUNI doi: 10.3389/fphar.2022.823572
  7. Sager RA, Khan F, Toneatto L, et al. Targeting extracellular Hsp90: a unique frontier against cancer. Front Mol Biosci. 2022;9:982593. EDN: QKBRAB doi: 10.3389/fmolb.2022.982593
  8. Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. J Natl Cancer Cent. 2022;2(4):277–290. EDN: OEVPPK doi: 10.1016/j.jncc.2022.09.002
  9. Paul R, Shreya S, Pandey S, et al. Functions and therapeutic use of heat shock proteins in hepatocellular carcinoma. Livers. 2024;4(1):142–163. EDN: COZDOV doi: 10.3390/livers4010011
  10. Li ZN, Luo Y. HSP90 inhibitors and cancer: prospects for use in targeted therapies (review). Oncol Rep. 2023;49(1):6. EDN: PMKTKG doi: 10.3892/or.2022.8443
  11. Nazaralieva ET, Fedorov BC, Zabrodskaya YuM, et al. Heat shock proteins as diagnostic and prognostic markers in malignant tumors of the central nervous system. Translational Medicine. 2022;9(6):5–15. EDN: FMSHBM doi: 10.18705/2311-4495-2022-9-6-5-15
  12. Backe SJ, Sager RA, Regan BR, et al. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand. Cell Rep. 2022;40(2):111039. EDN: BMQXZK doi: 10.1016/j.celrep.2022.111039
  13. Niinuma SA, Lubbad L, Lubbad W, et al. The role of heat shock proteins in the pathogenesis of polycystic ovarian syndrome: a review of the literature. Int J Mol Sci. 2023;24(3):1838. EDN: YAMATL doi: 10.3390/ijms24031838
  14. Wang Q, Tang X, Lv X, et al. Age at menarche and risk of ovarian hyperstimulation syndrome in women undergoing IVF/ICSI cycles: a retrospective cohort study. BMJ Open. 2024;14(2):e076867. EDN: MAEEZF doi: 10.1136/bmjopen-2023-076867
  15. Gareis NC, Rodríguez FM, Cattaneo Moreyra ML, et al. Contribution of key elements of nutritional metabolism to the development of cystic ovarian disease in dairy cattle. Theriogenology. 2023;197:209–223. EDN: TYROHO doi: 10.1016/j.theriogenology.2022.12.003
  16. Wickner S, Nguyen TL, Genest O. The bacterial Hsp90 chaperone: cellular functions and mechanism of action. Annu Rev Microbiol. 2021;75:719–739. EDN: DTYVKC doi: 10.1146/annurev-micro-032421-035644
  17. Prodromou C, Bjorklund DM. Advances towards understanding the mechanism of action of the Hsp90 complex. biomolecules. 2022;12(5):600. EDN: DULCDY doi: 10.3390/biom12050600.
  18. Biebl MM, Buchner J. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol. 2019;11(9):a034017. doi: 10.1101/cshperspect.a034017
  19. Cheng S, Huang M, Liu S, et al. Bisphenol F and bisphenol S induce metabolic perturbations in human ovarian granulosa cells. Arab J Chem. 2024;17(9):105904. EDN: JPPUWT doi: 10.1016/j.arabjc.2024.105904
  20. Hu C, Yang J, Qi Z, et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm. 2022;3(3):e161. EDN: OJMUCK doi: 10.1002/mco2.161
  21. Baker JD, Ozsan I, Rodriguez Ospina S, et al. Hsp90 heterocomplexes regulate steroid hormone receptors: from stress response to psychiatric disease. Int J Mol Sci. 2018;20(1):79. EDN: SJXPUY doi: 10.3390/ijms20010079.
  22. Isobe N, Yoshimura Y. Deficient proliferation and apoptosis in the granulosa and theca interna cells of the bovine cystic follicle. J Reprod Dev. 2007;53(5):1119–1124. doi: 10.1262/jrd.19041.
  23. Kolegova ES, Kondakova IV, Zavyalov AA. Small heat shock proteins and the ubiquitin-proteasome system in malignant tumors Oncology issues. 2016;62(3):401–405. EDN: WCNORB doi: 10.37469/0507-3758-2016-62-3-401-405
  24. Velázquez MM, Alfaro NS, Salvetti NR, et al. Levels of heat shock protein transcripts in normal follicles and ovarian follicular cysts. Reprod Biol. 2011;11(3):276–283. doi: 10.1016/s1642-431x(12)60072-2
  25. Silveyra GR, Medesani DA, Rodríguez EM. Effects of the herbicide atrazine on crustacean reproduction. Mini-review. Front Physiol. 2022;13:926492. EDN: TCFVWX doi: 10.3389/fphys.2022.926492
  26. Park E, Cockrem JF, Han KH, et al. Stress-induced activation of ovarian heat shock protein 90 in a rat model of polycystic ovary syndrome. J Obstet Gynaecol Res. 2012;38(2):396–407. doi: 10.1111/j.1447-0756.2011.01705.x
  27. Li L, Mo H, Zhang J, et al. The role of heat shock protein 90B1 in patients with polycystic ovary syndrome. PLoS One. 2016;11(4):e0152837. doi: 10.1371/journal.pone.0152837
  28. Mazitova AM, Topchu IA, Mingazova LA, et al. Role of autophagy in response of epithelial ovarian cancer cells to cisplatin treatment and cisplatin resistance. Genes and Cells. 2020;15(3):44-47. EDN: KAYQOE doi: 10.23868/202011006
  29. Li B, Wang W, Zhao L, et al. Aggregation-induced emission-based macrophage-like nanoparticles for targeted photothermal therapy and virus transmission blockage in monkeypox. Adv Mater. 2024;36(9):e2305378. EDN: DIVFUC doi: 10.1002/adma.202305378
  30. Dai J, Ashrafizadeh M, Aref AR, et al. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today. 2024;29(7):103981. EDN: KZEJOV doi: 10.1016/j.drudis.2024.103981
  31. Zheng P, Tan Y, Liu Q, et al. Deciphering the molecular and clinical characteristics of TREM2, HCST, and TYROBP in cancer immunity: a comprehensive pan-cancer study. Heliyon. 2024;10(5):e26993. EDN: MPJEZR doi: 10.1016/j.heliyon.2024.e26993
  32. Lu Q, Kou D, Lou S, et al. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol. 2024;17(1):16. EDN: DWTEEH doi: 10.1186/s13045-024-01535-8
  33. Niu MM, Guo HX, Shang JC, et al. Structural characterization and immunomodulatory activity of a mannose-rich polysaccharide isolated from bifidobacterium breve H4-2. J Agric Food Chem. 2023;71(49):19791–19803. EDN: ENDAWJ doi: 10.1021/acs.jafc.3c04916
  34. Bitsadze VО, Slukhanchuk ЕV, Solopova АG, et al. The role of the microenvironment in tumor growth and spreading. Obstetrics, gynecology and reproduction. 2024;18(1):96–111. EDN: JGPFWA doi: 10.17749/2313-7347/ob.gyn.rep.2024.489
  35. Ren X, Li T, Zhang W, et al. Targeting heat-shock protein 90 in cancer: an update on combination therapy. Cells. 2022;11(16):2556. EDN: RBKAOW doi: 10.3390/cells11162556
  36. Wu J, Liu T, Rios Z, et al. Heat shock proteins and cancer. Trends Pharmacol Sci. 2017;38(3):226–256. doi: 10.1016/j.tips.2016.11.009
  37. Lang BJ, Guerrero-Giménez ME, Prince TL, et al. Heat shock proteins are essential components in transformation and tumor progression: cancer cell intrinsic pathways and beyond. Int J Mol Sci. 2019;20(18):4507. EDN: OITAWI doi: 10.3390/ijms20184507
  38. Selivanova LS, Volganova KS, Abrosimov AIu. Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: biological and prognostic value. Russian Journal of Archive of Pathology. 2016;78(1):62-69. EDN: VOMQEH doi: 10.17116/patol201678162-68
  39. Szymonowicz K, Oeck S, Malewicz NM, et al. New Insights into protein kinase B/Akt signaling: role of localized akt activation and compartment-specific target proteins for the cellular radiation response. Cancers (Basel). 2018;10(3):78. doi: 10.3390/cancers10030078
  40. Shkurnikov MYu, Kaprin AD. The role of interactomic interactions in tamoxifen-resistant breast cancer: new approaches to searching for the mechanisms of pathogenesis. P.A. Herzen Journal of Oncology. 2020;9(6):80-85. EDN: INGLFY doi: 10.17116/onkolog2020906180
  41. Nagaraju GP, Zakka KM, Landry JC, et al. Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer. Int J Cancer. 2019;145(6):1529–1537. doi: 10.1002/ijc.32227
  42. Haeri MR, White K, Qharebeglou M, et al. Cholesterol suppresses antimicrobial effect of statins. Iran J Basic Med Sci. 2015;18(12):1253–1256.
  43. Xue XL, Zhao S, Xu MC, et al. Circular RNA_0000326 accelerates breast cancer development via modulation of the miR-9-3p/YAP1 axis. Neoplasma. 2023;70(3):430–442. EDN: NKWDYD doi: 10.4149/neo_2023_220904N894
  44. Yu Y, Wang L, Ni S, et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat Commun. 2022;13(1):4241. EDN: GLXWSQ doi: 10.1038/s41467-022-31997-8
  45. Dubrez L, Causse S, Borges Bonan N, et al. Heat-shock proteins: chaperoning DNA repair. Oncogene. 2020;39(3):516–529. EDN: YEDCVQ doi: 10.1038/s41388-019-1016-y
  46. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–817. EDN: YGCDZF doi: 10.1016/j.molcel.2017.05.015
  47. Yao X, Xie R, Zan X, et al. A novel image encryption scheme for DNA storage systems based on DNA hybridization and gene mutation. Interdiscip Sci. 2023;15(3):419–432. EDN: UKFYLD doi: 10.1007/s12539-023-00565-z
  48. Quanz M, Herbette A, Sayarath M, et al. Heat shock protein 90α (Hsp90α) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem. 2012;287(12):8803–8815. doi: 10.1074/jbc.M111.320887
  49. Ha K, Fiskus W, Rao R, et al. Hsp90 inhibitor-mediated disruption of chaperone association of ATR with hsp90 sensitizes cancer cells to DNA damage. Mol Cancer Ther. 2011;10(7):1194–206. doi: 10.1158/1535-7163.MCT-11-0094
  50. Orth M, Albrecht V, Seidl K, et al. Inhibition of HSP90 as a strategy to radiosensitize glioblastoma: targeting the DNA damage response and beyond. Front Oncol. 2021;11(7):612354. EDN: GAGLRC doi: 10.3389/fonc.2021.612354
  51. Graner MW. HSP90 and immune modulation in cancer. Adv Cancer Res. 2016;129:191–224. EDN: WSRDFT doi: 10.1016/bs.acr.2015.10.001
  52. Aoyagi Y, Fujita N, Tsuruo T. Stabilization of integrin-linked kinase by binding to Hsp90. Biochem Biophys Res Commun. 2005;331(4):1061–1068. doi: 10.1016/j.bbrc.2005.03.225
  53. Nikitin KD, Baryshnikov AYu. Antitumor vaccines based on heat shock proteins. Russian Biotherapeutic Journal. 2007;6(2):3–12. EDN: LACYTX
  54. Xu G, Ma X, Chen F, et al. 17-DMAG disrupted the autophagy flux leading to the apoptosis of acute lymphoblastic leukemia cells by inducing heat shock cognate protein 70. Life Sci. 2020;249:117532. EDN: UXJGHN doi: 10.1016/j.lfs.2020.117532
  55. Suwannalert P, Panpinyaporn P, Wantanachaisaeng P, et al. 17-AAG Induces endoplasmic reticulum stress-mediated apoptosis in breast cancer cells, possibly through PERK/eIF2α up-regulation. In Vivo. 2024;38(5):2228–2238. EDN: HRZLRJ doi: 10.21873/invivo.13687
  56. Kim SH, Cho YK, Huh JH, et al. Heat shock protein 90 inhibitors AUY922, BIIB021 and SNX5422 induce bim-mediated death of thyroid carcinoma cells. Anticancer Res. 2020;40(11):6137–6150. EDN: JRZFES doi: 10.21873/anticanres.
  57. Hartman ML, Rogut M, Mielczarek-Lewandowska A, et al. 17-aminogeldanamycin inhibits constitutive nuclear factor-kappa B (NF-κB) activity in patient-derived melanoma cell lines. Int J Mol Sci. 2020;21(11):3749. EDN: MFHQRV doi: 10.3390/ijms21113749
  58. Zong S, Jiao Y, Liu X, et al. FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-κB signaling. Cell Death Dis. 2021;12(6):602. EDN: JDPRCN doi: 10.1038/s41419-021-03857-8
  59. Elpek GO, Karaveli S, Simşek T, et al. Expression of heat-shock proteins hsp27, hsp70 and hsp90 in malignant epithelial tumour of the ovaries. APMIS. 2003;111(4):523–530. EDN: DLXTXF doi: 10.1034/j.1600-0463.2003.1110411.x
  60. Mileo AM, Fanuele M, Battaglia F, et al. Selective over-expression of mRNA coding for 90 KDa stress-protein in human ovarian cancer. Anticancer Res. 1990;10(4):903–906.
  61. Duan C, Li K, Pan X, et al. Hsp90 is a potential risk factor for ovarian cancer prognosis: an evidence of a Chinese clinical center. BMC Cancer. 2023;23(1):489. EDN: NBRQYR doi: 10.1186/s12885-023-10929-9
  62. Amoroso MR, Matassa DS, Sisinni L, et al. TRAP1 revisited: novel localizations and functions of a ‘next-generation’ biomarker (review). Int J Oncol. 2014;45(3):969–9677. doi: 10.3892/ijo.2014.2530
  63. Matassa DS, Agliarulo I, Avolio R, et al. TRAP1 regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195. doi: 10.3390/genes9040195
  64. Lan J, Chen L, Li Z, et al. Multifunctional biomimetic liposomes with improved tumor-targeting for TNBC treatment by combination of chemotherapy, antiangiogenesis and immunotherapy. Adv Healthc Mater. 2024;13(26):e2400046. EDN: YSXFEN doi: 10.1002/adhm.202400046
  65. Matassa DS, Amoroso MR, Lu H, et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–1554. doi: 10.1038/cdd.2016.39
  66. Aust S, Bachmayr-Heyda A, Pateisky P, et al. Role of TRAP1 and estrogen receptor alpha in patients with ovarian cancer -a study of the OVCAD consortium. Mol Cancer. 2012;11:69. EDN: XWBYKN doi: 10.1186/1476-4598-11-69
  67. Amoroso MR, Matassa DS, Agliarulo I, et al. TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial-mesenchymal transition. Cell Death Dis. 2016;7(12):e2522. doi: 10.1038/cddis.2016.400
  68. Maloney A, Clarke PA, Naaby-Hansen S, et al. Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 2007;67(7):3239–3253. doi: 10.1158/0008-5472.CAN-06-2968
  69. Amoroso MR, Matassa DS, Agliarulo I, et al. Stress-adaptive response in ovarian cancer drug resistance: role of TRAP1 in oxidative metabolism-driven inflammation. Adv Protein Chem Struct Biol. 2017;108:163–198. EDN: YXGVYV doi: 10.1016/bs.apcsb.2017.01.004
  70. Kalfa MA, Golovkin IO, Lazarev AE, et al. Molecular genetic markers of ovarian cancer tumor cells and their microenvironment, study methods, and clinical value: a review. Journal of Modern Oncology. 2023;25(3):308–312. EDN: NORXCW doi: 10.26442/18151434.2023.3.202422
  71. Aleshikova OI, Babaeva NA, Gerfanova EV. et al. Ovarian cancer, malignant ascites and microenvironment. Literature review. Sechenov Medical Journal. 2023;14(2):21–30. EDN: QTWJAP doi: 10.47093/2218-7332.2023.14.2.21-30
  72. Landriscina M, Amoroso MR, Piscazzi A, Esposito F. Heat shock proteins, cell survival and drug resistance: the mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy. Gynecol Oncol. 2010;117(2):177–182. doi: 10.1016/j.ygyno.2009.10.078
  73. Yun CO, Bhargava P, Na Y, et al. Relevance of mortalin to cancer cell stemness and cancer therapy. Sci Rep. 2017;7:42016. EDN: MJKLDL doi: 10.1038/srep42016
  74. Li S, Lv M, Qiu S, et al. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin. J Cell Mol Med. 2019;23(6):4338–4348. doi: 10.1111/jcmm.14325
  75. Zhou JW, Tang JJ, Sun W, et al. PGK1 facilities cisplatin chemoresistance by triggering HSP90/ERK pathway mediated DNA repair and methylation in endometrial endometrioid adenocarcinoma. Mol Med. 2019;25(1):11. EDN: UUJJTM doi: 10.1186/s10020-019-0079-0
  76. Chen X, Zhao C, Li X, et al. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat Chem Biol. 2015;11(1):19–25. doi: 10.1038/nchembio.1657
  77. Wang G, Cao P, Fan Y, Tan K. Emerging roles of HSF1 in cancer: Cellular and molecular episodes. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188390. EDN: NUFQGB doi: 10.1016/j.bbcan.2020.188390
  78. Carpenter RL, Gökmen-Polar Y. HSF1 as a cancer biomarker and therapeutic target. Curr Cancer Drug Targets. 2019;19(7):515–524. doi: 10.2174/1568009618666181018162117
  79. Cyran AM, Zhitkovich A. Heat shock proteins and HSF1 in cancer. Front Oncol. 2022;12:860320. EDN: LJVDHV doi: 10.3389/fonc.2022.860320
  80. Chin Y, Gumilar KE, Li XG, et al. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development. Theranostics. 2023;13(7):2281–2300. EDN: UUWSLZ doi: 10.7150/thno.82431
  81. Engerud H, Tangen IL, Berg A, et al. High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors. Br J Cancer. 2014;111(1):78–84. EDN: USJOXZ doi: 10.1038/bjc.2014.262
  82. Han S, Cheng Z, Zhao X, et al. Diagnostic value of heat shock protein 90α and squamous cell carcinoma antigen in detection of cervical cancer. J Int Med Res. 2019;47(11):5518–5525. doi: 10.1177/0300060519865634
  83. Sihe Chen, Yongheng Chen, Lanting Yu, et al. Overexpression of SOCS4 inhibits proliferation and migration of cervical cancer cells by regulating JAK1/STAT3 signaling pathway. Eur J Gynaecol Oncol. 2021. 42(3);554–560. doi: 10.31083/j.ejgo.2021.03.2416
  84. Lee RY, Koo JY, Kim NI, et al. Usefulness of the human papillomavirus DNA chip test as a complementary method for cervical cytology. Cytojournal. 2023;20:34. EDN: CKDVQB doi: 10.25259/Cytojournal_40_2020
  85. Al Amri W, Al Salmi I, Al Nabhani SK, et al. A rare and challenging case of uterine mass successfully reported in a cervical smear. Cytojournal. 2023;20:35. EDN: UKHBAA doi: 10.25259/Cytojournal_37_2022
  86. Zeng J, He SL, Li LJ, et al. Hsp90 up-regulates PD-L1 to promote HPV-positive cervical cancer via HER2/PI3K/AKT pathway. Mol Med. 2021;27(1):130. EDN: FCITJU doi: 10.1186/s10020-021-00384-2
  87. Song Q, Wen J, Li W, et al. HSP90 promotes radioresistance of cervical cancer cells via reducing FBXO6-mediated CD147 polyubiquitination. Cancer Sci. 2022;113(4):1463–1474. EDN: FUXEWH doi: 10.1111/cas.15269
  88. Vogelsang TLR, Schmoeckel E, Topalov NE, et al. Prognostic impact of heat shock protein 90 expression in women diagnosed with cervical cancer. Int J Mol Sci. 2024;25(3):1571. EDN: AMNPLE doi: 10.3390/ijms25031571
  89. Chen L, He Y, Zhu J, et al. The roles and mechanism of m6A RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163:114839. EDN: SEJWQM doi: 10.1016/j.biopha.2023.114839
  90. Barrott JJ, Haystead TA. Hsp90, an unlikely ally in the war on cancer. FEBS J. 2013;280(6):1381–1396. EDN: RHIICR doi: 10.1111/febs.12147
  91. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761–772. EDN: MCWEPJ doi: 10.1038/nrc1716
  92. Liu H, Xiao F, Serebriiskii IG, et al. Network analysis identifies an HSP90-central hub susceptible in ovarian cancer. Clin Cancer Res. 2013;19(18):5053–5067. doi: 10.1158/1078-0432.CCR-13-1115
  93. Kitson RR, Chang CH, Xiong R, et al. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nat Chem. 2013;5(4):307–314. doi: 10.1038/nchem.1596
  94. Li D, Marchenko ND, Schulz R, et al. Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 2011;9(5):577–588. doi: 10.1158/1541-7786
  95. Stope MB, Koensgen D, Burchardt M, et al. Jump in the fire--heat shock proteins and their impact on ovarian cancer therapy. Crit Rev Oncol Hematol. 2016;97:152–156. doi: 10.1016/j.critrevonc.2015.08.008
  96. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–615. EDN: SMJGTF doi: 10.1038/nature10166
  97. Jiao Y, Ou W, Meng F, et al. Targeting HSP90 in ovarian cancers with multiple receptor tyrosine kinase coactivation. Mol Cancer. 2011;10:125. EDN: XFGCRT doi: 10.1186/1476-4598-10-125
  98. Kim YJ, Lee SA, Myung SC, et al. Radicicol, an inhibitor of Hsp90, enhances TRAIL-induced apoptosis in human epithelial ovarian carcinoma cells by promoting activation of apoptosis-related proteins. Mol Cell Biochem. 2012;359(1–2):33–43. EDN: SZQWNW doi: 10.1007/s11010-011-0997-9.
  99. Talaei S, Mellatyar H, Asadi A, et al. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des. 2019;93(5):760–786. EDN: ORYFQS doi: 10.1111/cbdd.13486.
  100. Banerji U, Sain N, Sharp SY, et al. An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models. Cancer Chemother Pharmacol. 2008;62(5):769–778. doi: 10.1007/s00280-007-0662-x
  101. Choi YE, Battelli C, Watson J, et al. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells. Oncotarget. 2014;5(9):2678–2687. doi: 10.18632/oncotarget.1929
  102. Chandran T, Katragadda U, Teng Q, Tan C. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG). Int J Pharm. 2010;392(1–2):170–177. doi: 10.1016/j.ijpharm.2010.03.056
  103. Qin DJ, Tang CX, Yang L, et al. Hsp90 Is a novel target molecule of CDDO-me in inhibiting proliferation of ovarian cancer Cells. PLoS One. 2015;10(7):e0132337. EDN: YDLJGT doi: 10.1371/journal.pone.0132337
  104. Liang J, Wang D, Zhao Y, et al. Novel Hsp90-targeting PROTACs: enhanced synergy with cisplatin in combination therapy of cervical cancer. Eur J Med Chem. 2024;275:116572. EDN: MCZMRI doi: 10.1016/j.ejmech.2024.116572
  105. Fu LS, Qiu HH, Liu M, et al. SNX-2112, an Hsp90 inhibitor, suppresses cervical cancer cells proliferation, migration, and invasion by inhibiting the Akt/mTOR signaling pathway. Med Chem Res. 2020;29(6):942–953. EDN: SFWZUI doi: 10.1007/s00044-020-02534-3
  106. Xu D, Dong P, Xiong Y, et al. MicroRNA-361-mediated inhibition of HSP90 expression and EMT in cervical cancer is counteracted by oncogenic lncRNA NEAT1. Cells. 2020;9(3):632. EDN: XXCQOC doi: 10.3390/cells9030632
  107. Güven CM, Özgür A. BIIB021, an orally available and small-molecule inhibitor of HSP90, activates intrinsic apoptotic pathway in human cervical adenocarcinoma cell line (HeLa). Eur Rev Med Pharmacol Sci. 2023;27(15):7299–7308. doi: 10.26355/eurrev_202308_33301
  108. Okamoto J, Mikami I, Tominaga Y, et al. Inhibition of Hsp90 leads to cell cycle arrest and apoptosis in human malignant pleural mesothelioma. J Thorac Oncol. 2008;3(10):1089–1095. doi: 10.1097/JTO.0b013e3181839693

补充文件

附件文件
动作
1. JATS XML
2. Figure. Study search algorithm

下载 (346KB)

版权所有 © Eсо-Vector, 2025



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».