Comparative Assessment of Morphological Features of the Gravid Endometrium in Fetal Loss
- Authors: Tral T.G.1,2, Tolibova G.K.1,3
-
Affiliations:
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- Saint Petersburg State Pediatric Medical University
- North-Western State Medical University named after I.I. Mechnikov
- Issue: Vol 74, No 2 (2025)
- Pages: 59-67
- Section: Original study articles
- URL: https://journal-vniispk.ru/jowd/article/view/296137
- DOI: https://doi.org/10.17816/JOWD654814
- EDN: https://elibrary.ru/KOAQKS
- ID: 296137
Cite item
Abstract
BACKGROUND: The use of assisted reproductive technology programs to overcome infertility in some cases continues to be the only way to have a child. Unfortunately, the frequency of reproductive loss reaches average values in the population. Endometrial dysfunction is the cause of the abnormal morphogenesis of the gravid endometrium transformation as a significant factor of reproductive loss in assisted reproductive technology programs and habitual miscarriage.
AIM: The aim of this study was to compare the morphological features of aborted fetal tissue in non-developing pregnancies of the first trimester that occurred after the use of assisted reproductive technology and in habitual miscarriage.
METHODS: This study was conducted on 97 samples of non-developing pregnancy at 5–8 weeks of gestation. Histological examination was performed using standard methods. Immunohistochemical study to evaluate the expression of progesterone-induced blocking factor, stromal cell-derived factor-1, apoptosis-inducing factor, and endothelial marker was performed according to a standard procedure. Digital microscopy was performed on an Olympus BX46 microscope (Olympus Co., Japan) using cellSens 47 Entry software (Olympus Co., Japan). The expression of markers was calculated using the VideoTesT-Morphology 5.2 program (VideoTesT Ltd., Russia), followed by statistical analysis using the SPSS 23.0 (USA) and GraphPad Prism 9 (USA) software packages.
RESULTS: With incomplete gravid transformation of the endometrium, we verified a decrease in the expression of progesterone-induced blocking factor and stromal cell-derived factor-1 in the stroma and glands, and an increase in the expression of apoptosis-inducing factor in the glands. In the endometrial glands with full-fledged gravid transformation after IVF, the expression of progesterone-induced blocking factor was higher compared to non-developing pregnancy with habitual miscarriage. Similar data on the expression of stromal cell-derived factor-1 in the stroma and glands and CD34+ in the stroma of the gravid endometrium were obtained by statistical comparison of markers during full-fledged gravid transformation after IVF and habitual miscarriage.
CONCLUSION: A decrease in the expression of progesterone-induced blocking factor and stromal cell-derived factor-1 in the gravid endometrium leads to a loss of local immunosuppression and can cause reproductive loss regardless of the method of pregnancy. An increase in the expression of apoptosis-inducing factor in the glands of the gravid endometrium and CD34+ in the endometrial stroma after IVF and in habitual miscarriage indicate pathological activation of angiogenesis and apoptosis.
Full Text
##article.viewOnOriginalSite##About the authors
Tatiana G. Tral
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Saint Petersburg State Pediatric Medical University
Author for correspondence.
Email: ttg.tral@yandex.ru
ORCID iD: 0000-0001-8948-4811
SPIN-code: 1244-9631
MD, Dr. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgGulrukhsor K. Tolibova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov
Email: gulyatolibova@mail.ru
ORCID iD: 0000-0002-6216-6220
SPIN-code: 7544-4825
MD, Dr. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgReferences
- Warren SG. Can human populations be stabilized? Earth’s Future. 2015;3:82–94. doi: 10.1002/2014EF000275
- Aitken RJ. The changing tide of human fertility. Human Reprod. 2022:37:629–638. EDN: JTJFJS doi: 10.1093/humrep/deac011
- Spiridonov DV, Polyakova IG. The phenomenon of delayed motherhood and assisted reproductive technologies: socio-economic and demographic aspects. The world of Russia. 2024;33(3):75–98. (In Russ.) EDN: CWIHCL doi: 10.17323/1811-038X-2024-33-3-75-98
- Zhiryaeva EA, Kiyasova EV, Rizvanov AA. Comic book technologies in reproductive medicine: assessment of the quality of oocytes and embryos. Genes and cells. 2018;13(1):35–41. EDN: YNQDWH doi: 10.23868/201805003
- Adamyan LV, Elagin VV, Pivazyan LG, et al. Preimplantation genetic testing in gynecology – to be or not to be? Problems of reproduction. 2023;29(3):16–24. EDN: FVDOXI doi: 10.17116/repro20232903116
- Tolibova GH, Tral TG. Chronic endometritis – a protracted discussion. Ural Medical Journal. 2023;22(2):142–152. EDN: DPKBJR doi: 10.52420/2071-5943-2023-22-2-142-152
- Franasiak JM, Ruiz-Alonso M, Scott RT, et al. Both slowly developing embryos and a variable pace of luteal endometrial progression may conspire to prevent normal birth in spite of a capable embryo. Fertil Steril. 2016;105:861–866. doi: 10.1016/j.fertnstert.2016.02.030
- Ticconi C, Di Simone N, Campagnolo L, et al. Clinical consequences of defective decidualization. Tissue Cell. 2021;72:101586. EDN: MCTICI doi: 10.1016/j.tice.2021.101586
- Yang AM, Xu X, Han Y. et al. Risk factors for different types of pregnancy losses: analysis of 15,210 pregnancies after embryo transfer. Front Endocrinol (Lausanne). 2021;12:683236. EDN: GKNKGZ doi: 10.3389/fendo.2021.683236
- Evans J, Hutchison J, Salamonsen LA, et al. Proteomic insights into endometrial receptivity and embryo-endometrial epithelium interaction for implantation reveal critical determinants of fertility. Proteomics. 2020;20(1):e1900250. EDN: QUYKTS doi: 10.1002/pmic.201900250
- Tral TG, Tolibova GH, Serdyukov SV, et al. Morphofunctional assessment of the causes of frozen pregnancy in the first trimester. Journal of Obstetrics and Women’s Diseases. 2013;62(3):83–87. EDN: RJMDYJ doi: 10.17816/JOWD62383-87
- Tral TG, Tolibova GH, Kogan IY. Implantation failure of the endometrium in cycles of in vitro fertilization in patients with chronic endometritis. Klin Exp Morphology. 2023;12(1):24–33. doi: 10.31088/CEM2023.12.1.24-33
- Ng SW, Norwitz GA, Pavlicev M, et al. Endometrial decidualization: the primary driver of pregnancy health. Int J Mol Sci. 2020;21(11):4092. EDN: FJXLXV doi: 10.3390/ijms21114092
- Harris LK, Benagiano M, D’Elios MM, et al. Placental bed research: II. Functional and immunological investigations of the placental bed. Am J Obstet Gynecol. 2019;221(5):457–469. doi: 10.1016/j.ajog.2019.07.010
- Li D, Zheng L, Zhao D, et al. The role of immune cells in recurrent spontaneous abortion. Reprod Sci. 2021;28(12):3303–3315. doi: 10.1007/s43032-021-00599-y
- Mori M, Bogdan A, Balassa T, et al. The decidua-the maternal bed embracing the embryo-maintains the pregnancy. Semin Immunopathol. 2016;38(6):635–649. EDN: BXAWTJ doi: 10.1007/s00281-016-0574-0
- Mulac-Jericevic B, Sucurovic S, Gulic T, et al. The involvement of the progesterone receptor in PIBF and Gal-1 expression in the mouse endometrium. Am J Reprod Immunol. 2019;81(5):e13104. doi: 10.1111/aji.13104
- Zheng J, Wang H, Zhou W. Modulatory effects of trophoblast-secreted CXCL12 on the migration and invasion of human first-trimester decidual epithelial cells are mediated by CXCR4 rather than CXCR7. Reprod Biol Endocrinol. 2018;6(1):17. EDN: WPUWHA doi: 10.1186/s12958-018-0333-2
- Kuo CY, Shevchuk M, Opfermann J, et al. Trophoblast-endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnol Bioeng. 2019;116(1):181–192. EDN: VSDZIF doi: 10.1002/bit.26850
- Koo S, Yoon MJ, Hong SH, et al. CXCL12 enhances pregnancy outcome via improvement of endometrial receptivity in mice. Sci Rep. 2021;11(1):7397. EDN: MEXWTA doi: 10.1038/s41598-021-86956-y
- Burton GJ, Jauniaux E. Placentation in the human and higher primates. Adv Anat Embryol Cell Biol. 2021;234:223–254. EDN: RRHQJR doi: 10.1007/978-3-030-77360-1_11
- Hempstock J, Jauniaux E, Greenwold N, et al. The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol. 2003;(34):12:1265–1275. doi: 10.1016/j.humpath.2003.08.006
- Fortis MF, Fraga LR, Boquett JA, et al. Angiogenesis and oxidative stress-related gene variants in recurrent pregnancy loss. Reprod Fertil Dev. 2018;30(3):498–506. doi: 10.1071/RD17117
- Hussain T, Murtaza G, Metwally E, et al. The role of oxidative stress and antioxidant balance in pregnancy. Mediators Inflamm. 2021:9962860. EDN: MJMWJE doi: 10.1155/2021/9962860
- Vacca P, Vitale C, Montaldo E, et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci USA. 2011;108(6):2402–2407. doi: 10.1073/pnas.1016257108
- Bai L., Sun L, Chen W, et al. Evidence for the existence of CD34+ angiogenic stem cells in human first-trimester decidua and their therapeutic for ischaemic heart disease. J Cell Mol Med. 2020;24(20):11837–11848. EDN: HHIMOA doi: 10.1111/jcmm.15800
- Makri D, Efstathiou P, Michailidou E, et al. Apoptosis triggers the release of microRNA miR-294 in spent culture media of blastocysts. J Assist Reprod Genet. 2020;37(7):1685–1694. EDN: SOWFCL doi: 10.1007/s10815-020-01796-5
- Bakri NM, Ibrahim SF, Osman NA, et al. Embryo apoptosis identification: oocyte grade or cleavage stage? Saudi J Biol Sci. 2016;23(1):S50–S55. doi: 10.1016/j.sjbs.2015.10.0234
- Ramos-Ibeas P, Gimeno I, Cañón-Beltrán K, et al. Senescence and apoptosis during in vitro embryo development in a bovine model. Front Cell Dev Biol. 2020;8:619902. EDN: GKFWCC doi: 10.3389/fcell.2020.619902
- Bogdan A, Polgar B, Szekeres-Bartho J. Progesterone induced blocking factor isoforms in normal and failed murine pregnancies. Am J Reprod Immunol. 2014;71(2):131–136. doi: 10.1111/aji.12183
- Warner JA, Zwezdaryk KJ, Day B, et al. Human cytomegalovirus infection inhibits CXCL12-mediated migration and invasion of human extravillous cytotrophoblasts. Virol J. 2012;9:255. EDN: VFWNBS doi: 10.1186/1743-422X-9-255
- Pavlov KA, Dubova EA, Shchegolev AI. Fetoplacental angiogenesis in normal pregnancy: the role of vascular endothelial growth factor. Obstetrics and Gynecology. 2011;(3):C11–C16. (In Russ.)
- Steller JG, Alberts JR, Ronca AE. Oxidative stress as cause, consequence, or biomarker of altered female reproduction and development in the space environment. Int J Mol Sci. 2018;19(12):3729. EDN: TSKYMK doi: 10.3390/ijms19123729
- Wu S, Zhang H, Tian J, et al. Expression of kisspeptin/GPR54 and PIBF/PR in the first trimester trophoblast and decidua of women with recurrent spontaneous abortion. Pathol Res Pract. 2014;210(1):47–54. doi: 10.1016/j.prp.2013.09.017
- Ivanova AN, Popova EB, Tereshkina NE, et al. Vasomotor function of the endothelium. Advances in physiological sciences. 2020;51(4):82–104. EDN: IINNBV doi: 10.31857/S0301179820030066
- Tolibova GH. Endothelial dysfunction in women with infertility: pathogenetic determinants and clinical and morphological diagnostics [dissertation abstract]. Saint Petersburg; 2018. 40 p. EDN: YRHZUT
- Kogan IY. In vitro fertilization: a practical guide for doctors. Moscow: GEOTAR-Media; 2021. (In Russ.) EDN: FINBZV doi: 10.33029/9704-5941-6-IVF-2021-1-368
Supplementary files
