Prognostic value of morphokinetic parameters of human donor embryos for assessing chromosomal status: comparative analysis of embryonic development during culture in a TIME-LAPSE incubator
- Authors: Ishchuk M.A.1, Lesik E.A.1, Malysheva O.V.1, Sagurova Y.M.1, Zhiliaeva V.Y.1, Ob’edkova K.V.1, Komarova E.M.1
-
Affiliations:
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- Issue: Vol 74, No 5 (2025)
- Pages: 36-47
- Section: Original study articles
- URL: https://journal-vniispk.ru/jowd/article/view/363330
- DOI: https://doi.org/10.17816/JOWD690394
- EDN: https://elibrary.ru/IPTFNQ
- ID: 363330
Cite item
Abstract
BACKGROUND: Despite the widespread use of preimplantation genetic testing for aneuploidies, its high cost and limited applicability stimulate the search for non-invasive methods for assessing the chromosomal status of embryos. Morphokinetic parameters of embryonic development recorded using TIME-LAPSE incubators are considered potential prognostic markers of embryo “competence,” but their diagnostic value requires further study, particularly in the context of Russian domestic culture systems.
AIM: The aim of this study was to conduct a comparative analysis of morphokinetic parameters of human donor embryos during culture in a TIME-LAPSE embryonic development incubator to identify temporal patterns associated with different chromosomal statuses.
METHODS: This prospective observational study included donor embryos obtained by fertilization of donor oocytes with donor sperm between June 2023 and March 2025. Embryos were cultured in an EmbryoVisor incubator (Westtrade LTD, Russia) with recording of key morphokinetic events: time of pronuclei fading (tPNf); two to nine discrete cells (t2–t9); first evidence of compaction (tSc); morula formation (tM); initiation of blastulation (tSB); full blastocyst formation (tB); and expanded blastocyst formation (tEB). The chromosomal status of the embryos was determined by array comparative genomic hybridization (aCGH) after trophectoderm biopsy. Statistical analysis was performed using the Mann–Whitney, Kruskal–Wallis, and ANOVA tests.
RESULTS: The development of 28 donor embryos was analyzed. Embryos from zygotes with abnormal ploidy (3PN/0PN) demonstrated earlier first divisions (t2–t6, p < 0.05) than from those with normal ploidy (2PN). Euploid embryos reached the morula (tM) and blastocyst (tB) stages faster than aneuploid and mosaic embryos (p = 0.03 and p = 0.037, respectively). Embryos with the 46, XY karyotype had a shorter cc2b interval (p = 0.022) compared to those with the 46, XX karyotype.
CONCLUSION: Morphokinetic parameters, particularly the time of early divisions and first evidence of compaction, are associated with the chromosomal status of embryos. The data obtained may be used to develop non-invasive algorithms for embryo selection.
About the authors
Mariia A. Ishchuk
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Author for correspondence.
Email: mashamazilina@gmail.com
ORCID iD: 0000-0002-4443-4287
SPIN-code: 1237-6373
MD
Russian Federation, Saint PetersburgElena A. Lesik
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: lesike@yandex.ru
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgOlga V. Malysheva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: omal99@mail.ru
ORCID iD: 0000-0002-8626-5071
SPIN-code: 1740-2691
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgYanina M. Sagurova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: yanina.sagurova96@mail.ru
ORCID iD: 0000-0003-4947-8171
SPIN-code: 8908-7033
Russian Federation, Saint Petersburg
Valeria Yu. Zhiliaeva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: lera.zhilyaeva.03@mail.ru
ORCID iD: 0009-0008-2701-0598
SPIN-code: 8861-8743
Russian Federation, Saint Petersburg
Ksenia V. Ob’edkova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: obedkova_ks@mail.ru
ORCID iD: 0000-0002-2056-7907
SPIN-code: 2709-2890
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgEvgeniia M. Komarova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: evgmkomarova@gmail.com
ORCID iD: 0000-0002-9988-9879
SPIN-code: 1056-7821
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgReferences
- Kuliev A, Zlatopolsky Z, Kirillova I et al. Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online. 2011;22(1):2–8. doi: 10.1016/j.rbmo.2010.10.006
- Fragouli E, Alfarawati S, Spath K et al. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132(9):1001–1013. doi: 10.1007/s00439-013-1309-0 EDN: PQIGPY
- Arkhipova TS, Tatishcheva YA, Kalugina AS et al. Time-lapse microscopy in preimplantation assessment of human embryos. Doctor Ru. 2025;24(5):7–11. doi: 10.31550/1727-2378-2025-24-5-7-11 EDN: TDOCDG
- Barnes J, Brendel M, Gao VR, et al. A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study. Lancet Digit Health. 2023;5(1):e28–e40. doi: 10.1016/S2589-7500(22)00213-8 EDN: JXCTHE
- Pennetta F, Lagalla C, Sciajno R et al. The Association of Kinetic Variables with Blastocyst Development and Ploidy Status. J Reprod Infertil. 2021;22(3):159–164. doi: 10.18502/jri.v22i3.6716 EDN: WBLXTK
- Zou Y, Sui Y, Fu J, et al. The morphokinetic signature of human blastocysts with mosaicism and the clinical outcomes following transfer of embryos with low-level mosaicism. J Ovarian Res. 2024;17(1):10. doi: 10.1186/s13048-023-01324-w EDN: XUJUEJ
- Bamford T, Barrie A, Montgomery S, et al. Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis. Hum Reprod Update. 2022;28(5):656–686. doi: 10.1093/humupd/dmac022 EDN: AGLSOC
- Xin X, Wu S, Xu H, et al. Non-invasive prediction of human embryonic ploidy using artificial intelligence: a systematic review and meta-analysis. EClinicalMedicine. 2024;77:102897. doi: 10.1016/j.eclinm.2024.102897 EDN: SBYOEW
- Gardner D, Schoolcraft W. In vitro culture of human blastocysts. Towards Reprod Certainty. 1999:378–388.
- ESHRE Special Interest Group of Embryology and Alpha Scientists in Reproductive Medicine. Electronic address: coticchio.biogenesi@grupposandonato.it. The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reprod Biomed Online. 2017;35(5):494–510. doi: 10.1016/j.rbmo.2017.06.015
- Joergensen MW, Agerholm I, Hindkjaer J, et al. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method: a time-lapse study. J Assist Reprod Genet. 2014;31(4):435–442. doi: 10.1007/s10815-014-0178-3 EDN: AGLZEE
- Grossmann M, Calafell JM, Brandy N, et al. Origin of tripronucleate zygotes after intracytoplasmic sperm injection. Hum Reprod. 1997;12(12):2762–2765. doi: 10.1093/humrep/12.12.2762 EDN: IPGBTF
- Staessen C, Van Steirteghem AC. The chromosomal constitution of embryos developing from abnormally fertilized oocytes after intracytoplasmic sperm injection and conventional in-vitro fertilization. Hum Reprod. 1997;12(2):321–327. doi: 10.1093/humrep/12.2.321 EDN: IPIEWH
- Yu SL, Lee RK, Su JT et al. Distinction between paternal and maternal contributions to the tripronucleus in human zygotes obtained after in vitro fertilization. Taiwan J Obstet Gynecol. 2006;45(4):313–316. doi: 10.1016/S1028-4559(09)60249-7
- Macas E, Imthurn B, Rosselli M, et al. The chromosomal complements of multipronuclear human zygotes resulting from intracytoplasmic sperm injection. Hum Reprod. 1996;11(11):2496–2501. doi: 10.1093/oxfordjournals.humrep.a019147 EDN: YCQLHV
- Rosenbusch B, Schneider M, Sterzik K. The chromosomal constitution of multipronuclear zygotes resulting from in-vitro fertilization. Hum Reprod. 1997;12(10):2257–2262. doi: 10.1093/humrep/12.10.2257 EDN: IPFDFX
- Campbell A, Fishel S, Bowman N, et al. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod Biomed Online. 2013;26(5):477–485. doi: 10.1016/j.rbmo.2013.02.006
- Chavez SL, Loewke KE, Han J, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251. doi: 10.1038/ncomms2249
- Minasi MG, Colasante A, Riccio T, et al. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod. 2016;31(10):2245–2254. doi: 10.1093/humrep/dew183
- Meseguer M, Herrero J, Tejera A, et al. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–2671. doi: 10.1093/humrep/der256
- Wong CC, Loewke KE, Bossert NL, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–1121. doi: 10.1038/nbt.1686 EDN: NYNYVT
- Zhu J, Tsai HJ, Gordon MR et al. Cellular Stress Associated with Aneuploidy. Dev Cell. 2018;44(4):420–431. doi: 10.1016/j.devcel.2018.02.002
- Högnäs G, Tuomi S, Veltel S, et al. Cytokinesis failure due to derailed integrin traffic induces aneuploidy and oncogenic transformation in vitro and in vivo. Oncogene. 2012;31(31):3597–3606. doi: 10.1038/onc.2011.527
- Bielanska M, Tan SL, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod. 2002;17(2):413–419. doi: 10.1093/humrep/17.2.413 EDN: IPGKPP
- Huppertz B, Herrler A. Regulation of proliferation and apoptosis during development of the preimplantation embryo and the placenta. Birth Defects Res C Embryo Today. 2005;75(4):249–261. doi: 10.1002/bdrc.20056 EDN: MCSNYZ
- Sills ES, Li X, Frederick JL, et al. Determining parental origin of embryo aneuploidy: analysis of genetic error observed in 305 embryos derived from anonymous donor oocyte IVF cycles. Mol Cytogenet. 2014;7(1):68. doi: 10.1186/s13039-014-0068-5 EDN: SDNUWM
- Munné S, Alikani M, Ribustello L, et al. Euploidy rates in donor egg cycles significantly differ between fertility centers. Hum Reprod. 2017;32(4):743–749. doi: 10.1093/humrep/dex031
- Gao J, Yan Z, Yan L, et al. The effect of sperm DNA fragmentation on the incidence and origin of whole and segmental chromosomal aneuploidies in human embryos. Reproduction. 2023;166(2):117–124. doi: 10.1530/REP-23-0011 EDN: FFEKQM
- Capalbo A, Poli M, Rienzi L, et al. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial. Am J Hum Genet. 2021;108(12):2238–2247. doi: 10.1016/j.ajhg.2021.11.002 EDN: JCFRWK
- Huang B, Ren X, Zhu L, et al. Is differences in embryo morphokinetic development significantly associated with human embryo sex? Biol Reprod. 2019;100(3):618–623. doi: 10.1093/biolre/ioy229
- Luna M, Duke M, Copperman A, et al. Blastocyst embryo transfer is associated with a sex-ratio imbalance in favor of male offspring. Fertil Steril. 2007;87(3):519–523. doi: 10.1016/j.fertnstert.2006.06.058
- Petropoulos S, Edsgärd D, Reinius B, et al. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell. 2016;165(4):1012–1026. doi: 10.1016/j.cell.2016.03.023
- Okamoto I, Patrat C, Thépot D, et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature. 2011;472(7343):370–374. doi: 10.1038/nature09872
- Moreira de Mello JC, Fernandes GR, Vibranovski MD, et al. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci Rep. 2017;7(1):10794. doi: 10.1038/s41598-017-11044-z EDN: CEUWGW
Supplementary files
