Current relevance of non-invasive prenatal study of cell-free fetal DNA in the mother’s blood and prospects for its application in mass screening of pregnant women in the Russian Federation
- Authors: Kalashnikova E.A.1,2, Glotov A.S.3, Andreyeva E.N.1,2, Barkov I.Y.4, Bobrovnik G.Y.5,2, Dubrovina E.V.5,2, Zhuchenko L.A.1,2
-
Affiliations:
- Russian Medical Academy of Continuous Professional Education
- Fetal Medicine Association “National Society of Prenatal Medicine”
- The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov
- The Family Planning and Reproduction Center of the Moscow City Health Department
- Issue: Vol 70, No 1 (2021)
- Pages: 19-50
- Section: Current public health problems
- URL: https://journal-vniispk.ru/jowd/article/view/56573
- DOI: https://doi.org/10.17816/JOWD56573
- ID: 56573
Cite item
Abstract
This review article offers an analysis of application of cell-free fetal DNA non-invasive prenatal screening test for chromosome abnormalities in the mother’s blood in different countries. The diagnostic capacities of the method, its limitations, execution models and ethical aspects pertinent to its application are discussed. The data for the discordant results is shown and analyzed. The advantages of the genome-wide variant of cell-free fetal DNA analysis and the problems concerning its application in the mass screening are described. The main suggestion is to implement the contingent cell-free fetal DNA testing model for the common trisomies (for the chromosomes 21, 18 and 13) into the prenatal diagnostic screening programs in the Russian Federation. This novel model is based on the results of the mass combined first trimester prenatal screening in four federal subjects of the country completed by 2019 and is offered as an additional screening in the mid-level risk group (with cut-off from 1 : 100 to 1 : 500 or from 1 : 100 to 1 : 1000) defined according to the first trimester prenatal screening results. The basic requirements for the implementation of the contingent model in the Russian Federation are stated.
Full Text
##article.viewOnOriginalSite##About the authors
Elena A. Kalashnikova
Russian Medical Academy of Continuous Professional Education; Fetal Medicine Association “National Society of Prenatal Medicine”
Author for correspondence.
Email: elenakalash@yandex.ru
ORCID iD: 0000-0002-7861-6273
MD, PhD, Assistant Professor
Russian Federation, MoscowAndrey S. Glotov
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Email: anglotov@mail.ru
ORCID iD: 0000-0002-7465-4504
PhD, DSci (Biology)
Russian Federation, Saint-PetersburgElena N. Andreyeva
Russian Medical Academy of Continuous Professional Education; Fetal Medicine Association “National Society of Prenatal Medicine”
Email: e.n.andreeva@mail.ru
ORCID iD: 0000-0002-5649-0534
MD, PhD, Assistant Professor
Russian Federation, MoscowIlya Yu. Barkov
National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov
Email: i@barkov.ru
ORCID iD: 0000-0001-6297-2073
MD, PhD
Russian Federation, MoscowGalina Yu. Bobrovnik
The Family Planning and Reproduction Center of the Moscow City Health Department; Fetal Medicine Association “National Society of Prenatal Medicine”
Email: bobrovnik852@yandex.ru
Russian Federation, Moscow
Elena V. Dubrovina
The Family Planning and Reproduction Center of the Moscow City Health Department; Fetal Medicine Association “National Society of Prenatal Medicine”
Email: e.v.dubrovina@yandex.ru
ORCID iD: 0000-0002-2179-639X
Russian Federation, Moscow
Lyudmila A. Zhuchenko
Russian Medical Academy of Continuous Professional Education; Fetal Medicine Association “National Society of Prenatal Medicine”
Email: mrrcm@mail.ru
ORCID iD: 0000-0003-4918-2995
MD, PhD, DSci (Medicine)
Russian Federation, MoscowReferences
- Nikolaides K. Ul’trazvukovoe issledovanie v 11-13.6 nedel’ beremennosti: perevod s angl. Saint Petersburg: Petropolis; 2007. (In Russ.)
- Alldred SK, Takwoingi Y, Guo B, et al. First trimester ultrasound tests alone or in combination with first trimester serum tests for Down’s syndrome screening. Cochrane Database Syst Rev. 2017;3(3):CD012600. doi: 10.1002/14651858.CD012600
- Baranov VS, Kuznecova TV, Kashheeva TK, Ivashhenko TJe. Prenatal’naja diagnostika nasledstvennyh boleznej. Sostojanie i perspektivy. Saint Petersburg: Jeko-Vektor; 2017. (In Russ.)
- Analiz rezul’tatov rannego prenatal’nogo skrininga v Rossijskoj Federacii AUDIT – 2019. Informacionno-spravochnye materialy. Pis’mo MZR F No. 15-4/2963-07 11 Oct 2019. [cited: 2021 Jan 19]. Avaible from: https://fma-russia.ru/img/New %20Folder/ %D0 %90 %D0 %A3 %D0 %94 %D0 %98 %D0 %A2-2019 %20 %D1 %81 %20 %D0 %BF %D0 %B8 %D1 %81 %D1 %8C %D0 %BC %D0 %BE %D0 %BC %20 %D0 %9C %D0 %97 %D0 %A0 %D0 %A4.pdf. (In Russ.)
- Bianchi DW, Chiu RWK. Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med. 2018;379(5):464–473. doi: 10.1056/NEJMra1705345
- Green ED, Rubin EM, Olson MV. The future of DNA sequencing. Nature. 2017;550:179–181. doi: 10.1038/550179a
- Taglauer ES, Wilkins-Haug L, Bianchi DW. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta. 2014;35(Suppl):S64–S68. doi: 10.1016/j.placenta.2013.11.014
- Baranov VS, Lebedev VM, Poleev AV, Kuznecova TV. Uskorennyj prjamoj metod poluchenija metafaznyh i prometafaznyh hromosom iz kletok bioptata horiona i jembrionov cheloveka v pervom trimestre beremennosti. Bjulleten’ jeksperimental’noj biologii i mediciny.1990;110(8):196–198. (In Russ.)
- Kazakov VI, Bozhkov VM, Linde VA, et al. Vnekletochnaja DNK v krovi beremennyh zhenshhin. Tsitologiia. 1995;37(3):232–236. (In Russ.)
- Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–487. doi: 10.1016/S0140-6736(97)02174-0
- Hahn S, Lapaire O, Tercanli S, et al. Determination of fetal chromosome aberrations from fetal DNA in maternal blood: has the challenge finally been met? Expert Rev Mol Med. 2011;13:e16. doi: 10.1017/S1462399411001852
- Neinvazivnyj prenatal’nyj DNK-skrining aneuploidij ploda po krovi materi metodom vysokoproizvoditel’nogo sekvenirovanija. Klini¬cheskie rekomendacii. Obstetrics and Gynecology. 2016;6(suppl):24. (In Russ.). doi: 10.18565/aig.2016.6.recomendations
- Ivashchenko TE, Vashukova ES, Kozyulina PY, et al. Noninvasive Prenatal Testing Using Next Generation Sequencing: Pilot Experience of the D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology. Russian Journal of Genetics. 2019;55(10):1208–1213. (In Russ.). doi: 10.1134/S1022795419100053
- Faas BH. Prenatal genetic care: debates and considerations of the past, present and future. Expert Opin Biol Ther. 2015;15(8):1101–1105. doi: 10.1517/14712598.2015.1045873
- Ericsson O, Ahola T, Dahl F, et al. Clinical validation of a novel automated cell-free DNA screening assay for trisomies 21, 13, and 18 in maternal plasma. Prenat Diagn. 2019;39(11):1011–1015. doi: 10.1002/pd.5528
- Wright D, Wright A, Nicolaides KH. A unified approach to risk assessment for fetal aneuploidies. Ultrasound Obstet Gynecol. 2015;45(1):48–54. doi: 10.1002/uog.14694
- Committee on practice bulletins — obstetrics, committee on genetics, and the society for maternal-fetal medicine. Practice bulletin No. 163: Screening for fetal aneuploidy. Obstet Gynecol. 2016;127(5):e123–37. doi: 10.1097/AOG.0000000000001406
- Gil MM, Quezada MS, Revello R, et al. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2015;45:249–266. doi: 10.1002/uog.14791
- Gil MM, Accurti V, Santacruz B, et al. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2017;50:302–314. doi: 10.1002/uog.17484
- Mackie FL, Hemming K, Allen S, et al. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis. BJOG. 2017;124:32–46. doi: 10.1111/1471-0528.14050
- Taylor-Phillips S, Freeman K, Geppert J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002. doi: 10.1136/bmjopen-2015-010002
- Gil MM, Galeva S, Jani J, et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet Gynecol. 2019;53(6):734–742. doi: 10.1002/uog.20284
- Wang Y, Li S, Wang W, et al. Cell-free DNA screening for sex chromosome aneuploidies by non-invasive prenatal testing in maternal plasma. Mol Cytogenet. 2020;13:10. doi: 10.1186/s13039-020-0478-5
- Helgeson J, Wardrop J, Boomer T, et al. Clinical outcome of subchromosomal events detected by whole-genome noninvasive prenatal testing. Prenat Diagn. 2015;35(10):999–1004. doi: 10.1002/pd.4640
- Martin K, Iyengar S, Kalyan A, et al. Clinical experience with a single-nucleotide polymorphism-based non-invasive prenatal test for five clinically significant microdeletions. Clin Genet. 2018;93:293–300. doi: 10.1111/cge.13098
- Van der Meij KRM, Sistermans EA, Macville MVE, et al. TRIDENT-2: National implementation of genome-wide non-invasive prenatal testing as a first-tier screening test in the Netherlands. Am J Hum Genet. 2019;105:1091–1101. doi: 10.1016/j.ajhg.2019.10.005
- Zhang H, Gao Y, Jiang F, et al. Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies. Ultrasound Obstet Gynecol. 2015;45(5):530–538. doi: 10.1002/uog.14792
- Chitty LS, Hudgins L, Norton ME. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities. Prenatal Diagnosis. 2018;38:160–165. doi: 10.1002/pd.5216
- Reiss RE, Discenza M, Foster J, Dobson L, Wilkins-Haug L. Sex chromosome aneuploidy detection by noninvasive prenatal testing: helpful or hazardous? Prenat Diagn. 2017;37:515–520. doi: 10.1002/pd.5039
- Bianchi DW, Parsa S, Bhatt S, et al. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology. Obstet Gynecol. 2015;125:375–382. doi: 10.1097/AOG.0000000000000637
- Chen Y, Yu Q, Mao X, et al. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. Hum Genomics. 2019;13:60. doi: 10.1186/s40246-019-0250-2
- Badeau M, Lindsay C, Blais J, et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women. Cochrane Database Syst Rev. 2017;11(11):CD011767. doi: 10.1002/14651858.CD011767.pub2
- Hartwig TS, Ambye L, Sørensen S, Jørgensen FS. Discordant non-invasive prenatal testing (NIPT) — a systematic review. Prenat Diagn. 2017;37(6):527–539. doi: 10.1002/pd.5049
- Wilkins-Haug L, Zhang C, Cerveira E, et al. Biological explanations for discordant noninvasive prenatal test results: Preliminary data and lessons learned. Prenat Diagn. 2018;38(6):445–458. doi: 10.1002/pd.5260
- Grati FR, Malvestiti F, Ferreira JCPB, et al. Fetoplacental mosaicism: potential implications for false-positive and false-negative noninvasive prenatal screening results. Genet Med. 2014;16:620–624. doi: 10.1038/gim.2014.3
- Grati FR, Malvestiti F, Branca L, et al. Chromosomal mosaicism in the fetoplacental unit. Best Pract Res Clin Obstet Gynaecol. 2017;42:39–52. doi: 10.1016/j.bpobgyn.2017.02.004
- Grati FR, Ferreira J, Benn P, et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA. Genet Med. 2020;22:309–316. doi: 10.1038/s41436-019-0630-y
- Malvestiti F, Agrati C, Grimi B, et al. Interpreting mosaicism in chorionic villi: results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis. Prenat Diagn. 2015;35:1117–1127. doi: 10.1002/pd.4656
- Shubina J, Trofimov DY, Barkov IY, et al. In silico size selection is effective in reducing false positive NIPS cases of monosomy X that are due to maternal mosaic monosomy X. Prenat Diagn. 2017;37(13):1305–1310. doi: 10.1002/pd.5178
- Benn P. Expanding non-invasive prenatal testing beyond chromosomes 21, 18, 13, X and Y. Clin Genet. 2016;90:477–485. doi: 10.1111/cge.12818
- Shubina J, Barkov IY, Stupko OK, et al. Prenatal diagnosis of Prader-Willi syndrome due to uniparental disomy with NIPS: Case report and literature review. Mol Genet Genomic Med. 2020;8(10):e1448. doi: 10.1002/mgg3.1448
- Barkov IY, Shubina J, Kuznetsova M, et al. Detection of partial 4-th chromosome deletion and 12-th chromosome duplication with noninvasive prenatal DNA screening. Prenat. Diagn. 2018;(38):S.1–P2–25:75–76. doi: 10.1002/pd.5301
- Grati FR, Benn P. Comment on “The clinical utility of genome-wide non invasive prenatal screening”. Prenat Diagn. 2017;37:1050–1052. doi: 10.1002/pd.5098
- Fiorentino F, Bono S, Pizzuti F, et al. The clinical utility of genome-wide noninvasive prenatal screening. Prenat Diagn. 2017;37:593–601. doi: 10.1002/pd.5053
- Fiorentino F, Bono S, Pizzuti F, et al. Author’s reply to Grati and Benn. Prenat Diagn. 2017;37:1053–1054. doi: 10.1002/pd.5136
- Benn P, Grati FR. Genome-wide non-invasive prenatal screening for all cytogenetically visible imbalances. Ultrasound Obstet Gynecol. 2018;51:429–433. doi: 10.1002/uog.19014
- Ferreira JC, Grati FR, Bajaj K, et al. Frequency of fetal karyotype abnormalities in women undergoing invasive testing in the absence of ultrasound and other high-risk indications. Prenat Diagn. 2016;36:1146–1155. doi: 10.1002/pd.4951
- Wang Y, Zhu J, Chen Y, et al. Two cases of placental T21 mosaicism: challenging the detection limits of non-invasive prenatal testing. Prenat Diagn. 2013;33:1207–1210. doi: 10.1002/pd.4212
- Pan M, Li FT, Li Y, et al. Discordant results between fetal karyotyping and non-invasive prenatal testing by maternal plasma sequencing in a case of uniparental disomy 21 due to trisomic rescue. Prenat Diagn. 2013;33:598–601. doi: 10.1002/pd.4069
- Benn P, Malvestiti F, Grimi B, et al. Rare autosomal trisomies: comparison of detection through cell-free DNA analysis and direct chromosome preparation of chorionic villus samples. Ultrasound Obstet Gynecol. 2019;54:458–467. doi: 10.1002/uog.20383
- Pertile MD, Halks-Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017;9(405):eaan1240. doi: 10.1126/scitranslmed.aan1240
- Bianchi DW, Chudova D, Sehnert AJ, et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA. 2015;314:162–169. doi: 10.1001/jama.2015.7120
- Curnow KJ, Wilkins-Haug L, Ryan A, et al. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test. Am J Obstet Gynecol. 2015;212:79.e1–9. doi: 10.1016/j.ajog.2014.10.012
- Wapner RJ, Babiarz JE, Levy B, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol. 2015;212:332.e1–332.e339. doi: 10.1016/j.ajog.2014.11.041
- Grace MR, Hardisty E, Dotters-Katz SK, Vora NL, Kuller JA. Cell-free DNA screening: complexities and challenges of clinical implementation. Obstet Gynecol Surv. 2016;71:477–487. doi: 10.1097/OGX.0000000000000342
- Genetics Committee on Genetics Society for Maternal-Fetal Medicine. Committee Opinion No. 640: Cell-free DNA screening for fetal aneuploidy. Obstet Gynecol. 2015;126(3):e31–e37. doi: 10.1097/AOG.0000000000001051
- Gregg AR, Skotko BG, Benkendorf JL, et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med. 2016;18(10):1056–1065. doi: 10.1038/gim.2016.97
- Di Renzo GC, Bartha JL, Bilardo CM. Expanding the indications for cell-free DNA in the maternal circulation: clinical considerations and implications. Am J Obstet Gynecol. 2019;220:537–542. doi: 10.1016/j.ajog.2019.01.009
- Di Renzo GC, Luis Bartha J, Bilardo CM. More research is needed prior to the implementation of genome-wide cell-free DNA testing in specific populations. (Response to letter L19-020A: Confined placental trisomy detection through cell-free DNA in the maternal circulation: Benefit for pregnancy management). Am J Obstet Gynecol. 2019;221(3):287. doi: 10.1016/j.ajog.2019.05.031
- Benn P, Borrell A, Chiu RW, et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn. 2015;35(8):725–734. doi: 10.1002/pd.4608
- Jani JC, Gil MM, Benachi A, et al. Genome — wide cfDNA testing of maternal blood. Ultrasound Obstet Gynecol. 2020;55(1):13–14. doi: 10.1002/uog.21945
- De Wergifosse S, Bevilacqua E, Mezela I, et al. Cell-free DNA analysis in maternal blood: comparing genome-wide versus targeted approach as a first-line screening test. J Matern Fetal Neonatal Med. 2019;13:1–10. doi: 10.1080/14767058.2019.1686478
- Wilson JMG, Jungner G. Principles and practice of screening for disease. Geneva: World Health Organization; 1968 [cited 2021 Jan 19]. Available from: https://apps.who.int/iris/handle/10665/37650
- Suciu ID, Toader OD, Galeva S, Pop L. Non-invasive prenatal testing beyond trisomies. J Med Life. 2019;12(3):221–224. doi: 10.25122/jml-2019-0053
- Han BW, Yang F, Guo ZW, et al. Noninvasive inferring expressed genes and in vivo monitoring of the physiology and pathology of pregnancy using cell-free DNA. Am J Obstet Gynecol. 2020;29:S0002-9378(20)30985-6. doi: 10.1016/j.ajog.2020.08.104
- Baranov VS, Kashheeva TK, Kuznecova YV. Achievements, sensations and problems of molecular prenatal diagnostics. Journal of Obstetrics and Women’s Diseases. 2016;65(2):70–80. (In Russ.). doi: 10.17816/JOWD65270-80
- Baranov VS, Kuznecova TV, Kashheeva TK, Ivashhenko TJe. Prenatal’naja diagnostika nasledstvennyh boleznej. Sostojanie i perspektivy. 3rd ed. Saint Petersburg: Jeko-Vektor; 2020. (In Russ.)
- Federal’nyj zakon ot 21 nojabrja 2011 No. 323-FZ “Ob osnovah ohrany zdorov’ja grazhdan v Rossijskoj Federacii” [cited: 2021 Jan 19]. Avaible from: https://www.rosminzdrav.ru/documents/7025. (In Russ.)
- Dondorp W, de Wert G, Bombard Y, et al.; European Society of Human Genetics; American Society of Human Genetics. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur J Hum Genet. 2015;23(11):1438-1450. doi: 10.1038/ejhg.2015.57
- Skotko BG, Allyse MA, Bajaj K, et al. Adherence of Cell-free DNA Noninvasive Prenatal Screens to ACMG Recommendations. Genetics in Medicine. 2019;21(10):2285–2292. doi: 10.1038/s41436-019-0485-2
- Skotko BG, Allyse MA, Bajaj K, et al. Response to Johansen Taber et al. Genet Med. 2019;21:2660–2661. doi: 10.1038/s41436-019-0556-4
- Baranova EE, Belenikin MS, Zhuchenko LA, Izhevskaya VL. Non-invasive prenatal tests: European and American recommendations. Medical genetics. 2017;16(8):3–11. (In Russ.)
- Sachs A, Blanchard L, Buchanan A, et al. Recommended pre-test counseling points for noninvasive prenatal testing using cell-free DNA: a 2015 perspective. Prenat Diagn. 2015;35:968–971. doi: 10.1002/pd.4666
- Hill M, Johnson JA, Langlois S, et al. Preferences for prenatal tests for Down Syndrome: an international comparison of the views of pregnant women and health professionals. Eur J Hum Genet. 2016;24(7):968–975. doi: 10.1038/ejhg.2015.249
- Sayres LC, Allyse M, Goodspeed TA, Cho MK. Demographic and experiential correlates of public attitudes towards cell-free fetal DNA screening. J Genet Couns. 2014;23(6):957–967. doi: 10.1007/s10897-014-9704-9
- Gil MM, Giunta G, Macalli EA, et al. UK NHS pilot study on cell-free DNA testing in screening for fetal trisomies factors affecting uptake. Ultrasound Obstet Gynecol. 2015;45(1):67–73. doi: 10.1002/uog.14683
- Izhevskaia VL, Zhuchenko LA, Zaiaeva EE, et al. Predpochtenija vrachej v vybore metodov rannego prenatal’nogo testirovanija: pilotnoe issledovanie v Rossii. In: XIII Mezhdunarodnyj kongress po reproduktivnoj medicine. Moscow; 2019:13–14 [cited: 2021 Jan 19]. Avaible from: https://docviewer.yandex.ru/view/94511273/?page = 466&* = BbQw6iSQgVon4tvZhMKcI8YbKrR7InVybCI6InlhLW1haWw6Ly8xNzQ1MTQ0ODU1NjA2MjY1MjQvMS4yIiwidGl0bGUiOiJ0aGVzaXNfcnpzMTkucGRmIiwibm9pZnJhbWUiOmZhbHNlLCJ1aWQiOiI5NDUxMTI3MyIsInRzIjoxNjA4MjI1NDQ2NDMwLCJ5dSI6IjY5MTQ5MTk3MTE0OTk3MTg3MDAifQ %3D %3D. (In Russ.)
- Baranova EE, Zayaeva EE, Zhuchenko LA, et al. A survey of pregnant women about their preferences for prenatal tests with different characteristics. Medical Genetics. 2020;19(3):74–75. (In Russ.). doi: 10.25557/2073-7998.2020.03.74-75
- Oepkes D, Bartha JL, Schmid M, Yaron Y. Benefits of contingent screening vs primary screening by cell-free DNA testing: think again. Ultrasound Obstet Gynecol. 2016;47:542–545. doi: 10.1002/uog.15758
- Salomon LJ, Alfirevic Z, Audibert F, et al. ISUOG updated consensus statement on the impact of cfDNA aneuploidy testing on screening policies and prenatal ultrasound practice. Ultrasound Obstet Gynecol. 2017;49:815–816. doi: 10.1002/uog.17483
- Abousleiman C, Lismonde A, Jani JC. Concerns following rapid implementation of first-line screening for aneuploidy by cell-free DNA analysis in the Belgian healthcare system. Ultrasound Obstet Gynecol. 2019;53(6):847–848. doi: 10.1002/uog.20280
- Van Opstal D, van Maarle M, Lichtenbelt K, et al. Origin and clinical relevance of chromosomal aberrations other than the common trisomies detected by genome-wide NIPS: results of the TRIDENT study. Genet Med. 2018;20:480–485. doi: 10.1038/gim.2017.132
- Nicolaides KH, Wright D, Poon LC, et al. First-trimester contingent screening for trisomy 21 by biomarkers and maternal blood cell-free DNA testing. Ultrasound Obstet Gynecol. 2013;42(1):41–50. doi: 10.1002/uog.12511
- Chitty LS, Wright D, Hill M, et al. Uptake, outcomes, and costs of implementing non-invasive prenatal testing for Down’s syndrome into NHS maternity care: prospective cohort study in eight diverse maternity units. BMJ. 2016;354:i3426. doi: 10.1136/bmj.i3426
- Miltoft CB, Rode L, Ekelund CK, et al. Contingent first-trimester screening for aneuploidies ith cell-free DNA in a Danish clinical setting. Ultrasound Obstet Gynecol. 2018;51(4):470–479. doi: 10.1002/uog.17562
- Nicolaides KH, Spencer K, Avgidou K, et al. Multicenter study of first-trimester screening for trisomy 21 in 75 821 pregnancies: results and estimation of the potential impact of individual risk-orientated two-stage first-trimester screening. Ultrasound Obstet Gynecol. 2005;25:221–226. doi: 10.1002/uog.1860
- Kagan KO, Etchegaray A, Zhou Y, et al. Prospective validation of first-trimester combined screening for trisomy 21. Ultrasound Obstet Gynecol. 2009;34:14–18. doi: 10.1002/uog.6412
- Kagan KO, Hoopmann M, Hammer R, et al. Screening for chromosomal abnormalities by first trimester combined screening and noninvasive prenatal testing. Ultraschall Med. 2015;36:40–46. doi: 10.1055/s-0034-1385059
- Santorum M, Wright D, Syngelaki A, et al. Accuracy of first trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet Gynecol. 2017;49(6):714–720. doi: 10.1002/uog.17283
- Kagan KO, Sonek J, Wagner P, Hoopmann M. Principles of first trimester screening in the age of non-invasive prenatal diagnosis: screening for chromosomal abnormalities. Arch Gynecol Obstet. 2017;296(4):645–651. doi: 10.1007/s00404-017-4459-9
- Miranda J, Paz y Miño F, Borobio V, et al. Should cell-free DNA testing be used in pregnancy with increased fetal nuchal translucency? Ultrasound Obstet Gynecol. 2020;55(5):645–651. doi: 10.1002/uog.20397
- Bardi F, Bosschieter P, Verheij J, et al. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenatal Diagnosis. 2020;40:197–205. doi: 10.1002/pd.5590
- Kagan KO, Sroka F, Sonek J, et al. First-trimester risk assessment based on ultrasound and cell-free DNA vs combined screening: a randomized controlled trial. Ultrasound Obstet Gynecol. 2018;51(4):437–444. doi: 10.1002/uog.18905
- Sonek JD, Kagan KO, Nicolaides KH. Inverted Pyramid of Care. Clin Lab Med. 2016;36(2):305–317. doi: 10.1016/j.cll.2016.01.009
- Nshimyumukiza L, Menon S, Hina H, et al. Cell-free DNA noninvasive prenatal screening for aneuploidy versus conventional screening: a systematic review of economic evaluations. Clin Genet. 2018;94:3–21. doi: /10.1111/cge.13155
- Emel’janenko ES, Vetrova NV, Masjuk SV, et al. Prenatal diagnosis of chromosomal abnormalities: Clinical- and cost-effectiveness. Doctor.ru. 2016;3(120):43–51. (In Russ.)
- Nicolaides KH, Syngelaki A, Poon LC, et al. First-trimester contingent screening for trisomies 21, 18 and 13 by biomarkers and maternal blood cell-free DNA testing. Fetal Diagn Ther. 2014;35(3):185–192. doi: 10.1159/000356066
- Gil MM, Quezada MS, Bregant B, et al. Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies. Ultrasound Obstet Gynecol. 2013;42:34–40. doi: 10.1002/uog.12504
- Gil MM, Revello R, Poon LC, et al. Clinical implementation of routine screening for fetal trisomies in the UK NHS: cell-free DNA test contingent on results from first-trimester combined test. Ultrasound Obstet Gynecol. 2016;47(1):45–52. doi: 10.1002/uog.15783
- Cotarelo-Pérez C, Oancea-Ionescu R, Asenjo-de-la-Fuente E, et al. A contingent model for cell-free DNA ¬testing to detect fetal aneuploidy¬ after first trimester combined ¬screening. Eur J Obstet Gynecol Reprod Biol X. 2019;1:100002. doi: 10.1016/j.eurox.2019.100002
- Rose NC, Kaimal AJ, Dugoff L, Norton ME; American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins — Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for fetal chromosomal abnormalities: ACOG Practice Bulletin, Number 226. Obstet Gynecol. 2020;136(4):e48–e69. doi: 10.1097/AOG.0000000000004084
- Vossaert L, Wang Q, Salman R, et al. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenatal Diagnosis. 2018;38(13):1069–1078. doi: 10.1002/pd.5377
- Evans MI, Evans SM, Bennett TA, Wapner RJ. The price of abandoning diagnostic testing for cell-free fetal DNA screening. Prenatal Diagnosis. 2018;38:243–245. doi: 10.1002/pd.5226
- Srebniak MI, Knapen MFCM, Govaerts LCP, et al. Social and medical need for whole genome high resolution NIPT. Mol Genet Genomic Med. 2020;8:e1062. doi: 10.1002/mgg3.1062
- Prikaz Ministerstva zdravoohranenija Rossijskoj Federacii ot 20.10.2020 No. 1130n “Ob utverzhdenii Porjadka okazanija medicinskoj pomoshhi po profilju “akusherstvo i ginekologija”” [cited: 2021 Jan 19]. Available from: http://publication.pravo.gov.ru/Document/View/0001202011130037. (In Russ.)
Supplementary files
