Role of maternal melatonin in the development of the microbiome in children

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review presents literature data on the role of melatonin in regulating the composition of the microbiota and on the variety of functions it performs that are synchronized with the circadian rhythm of vital activity of the body. During pregnancy, the restructuring of the intestinal, vaginal and placental microbiota is provided by a significant increase in the production of epiphyseal melatonin, which contributes to the creation of optimal conditions for the development of microflora in early ontogenesis. In the absence of circadian production of melatonin, a pregnant woman retains dysbiosis, which determines the transmission of altered intestinal microflora to the fetus and subsequent metabolic dysregulation in the child’s body.

About the authors

Inna I. Evsyukova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Author for correspondence.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198

MD, PhD, DSci (Medicine), Professor, Leading Researcher. The Department of Physiology and Pathology of the Newborn

Russian Federation, Saint Petersburg

Eduard K. Ailamazyan

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: iagmail@ott.ru
ORCID iD: 0000-0002-9848-0860
SPIN-code: 9911-1160

MD, PhD, DSci (Medicine), Professor, Honored Scientist of the Russian Federation

Russian Federation, Saint Petersburg

References

  1. Torow N, Hornef MW. The neonatal window of opportunity: Setting the stage for life-long host-microbial interaction and immune homeostasis. J Immunol. 2017;198(2):557-563. https://doi.org/10.4049/jimmunol.1601253.
  2. Arrieta MC, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: Health and disease. Front Immunol. 2014;5:427. https://doi.org/10.3389/fimmu.2014.00427.
  3. Macpherson AJ, de Agüero MG, Ganal-Vonarburg SC. How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol. 2017;17(8):508-517. https://doi.org/10.1038/nri.2017.58.
  4. Diaz Heijtz R. Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Semin Fetal Neonatal Med. 2016;21(6):410-417. https://doi.org/10.1016/j.siny.2016.04.012.
  5. Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants. Dev Psychobiol. 2019;61(5):739-751. https://doi.org/10.1002/dev.21806.
  6. Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666-673. https://doi.org/10.1038/mp.2012.77.
  7. Jiménez E, Fernández L, Marín ML, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol. 2005;51(4):270-274. https://doi.org/10.1007/s00284-005-0020-3.
  8. Funkhouser LJ, Bordenstein SR. Mom knows best: The universality of maternal microbial transmission. PLoS Biol. 2013;11(8):e1001631. https://doi.org/10.1371/journal.pbio.1001631.
  9. Butel MJ, Waligora-Dupriet AJ, Wydau-Dematteis S. The developing gut microbiota and its consequences for health. J Dev Orig Health Dis. 2018;9(6):590-597. https://doi.org/10.1017/S2040174418000119.
  10. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-180. https://doi.org/10.1038/nature09944.
  11. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-230. https://doi.org/10.1038/nature11550.
  12. Dave M, Higgins PD, Middha S, Rioux KP. The human gut microbiome: Current knowledge, challenges, and future directions. Transl Res. 2012;160(4):246-257. https://doi.org/10.1016/j.trsl.2012.05.003.
  13. Farthing MJ. Bugs and the gut: An unstable marriage. Best Pract Res Clin Gastroenterol. 2004;18(2):233-239. https://doi.org/10.1016/j.bpg.2003.11.001.
  14. Zheng X, Xie G, Zhao A, et al. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res. 2011;10(12): 5512-5522. https://doi.org/10.1021/pr2007945.
  15. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577-591. https://doi.org/10.1038/nrendo.2015.128.
  16. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859-904. https://doi.org/10.1152/physrev.00045.2009.
  17. Stevens CE, Hume ID. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev. 1998;78(2):393-427. https://doi.org/10.1152/physrev.1998.78.2.393.
  18. Dinan TG, Cryan JF. The Microbiome-Gut-Brain axis in health and disease. Gastroenterol Clin North Am. 2017;46(1):77-89. https://doi.org/10.1016/j.gtc.2016.09.007.
  19. Reinhardt C, Bergentall M, Greiner TU, et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature. 2012;483(7391):627-631. https://doi.org/10.1038/nature10893.
  20. Haase S, Haghikia A, Wilck N, et al. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154(2):230-238. https://doi.org/ 10.1111/imm.12933.
  21. De Weerth C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev. 2017;83:458-471. https://doi.org/10.1016/ j.neubiorev.2017.09.016.
  22. Borre YE, O’Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol Med. 2014;20(9):509-518. https://doi.org/10.1016/j.molmed.2014.05.002.
  23. Thaiss CA, Levy M, Korem T, et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016;167(6):1495-1510.e12. https://doi.org/10.1016/j.cell. 2016.11.003.
  24. Paulose JK, Cassone VM. The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes. Gut Microbes. 2016;7(5):424-427. https://doi.org/10.1080/ 19490976.2016.1208892.
  25. Anderson G, Vaillancourt C, Maes M, Reiter RJ. Breastfeeding and the gut-brain axis: Is there a role for melatonin? Biomol Concepts. 2017;8(3-4):185-195. https://doi.org/10.1515/bmc-2017-0009.
  26. Wu G, Tang W, He Y, et al. Light exposure influences the diurnal oscillation of gut microbiota in mice. Biochem Biophys Res Commun. 2018;501(1):16-23. https://doi.org/10.1016/ j.bbrc.2018.04.095.
  27. Paulose JK, Wright JM, Patel AG, Cassone VM. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One. 2016;11(1):e0146643. https://doi.org/10.1371/journal.pone.0146643.
  28. Vaughn BV, Rotolo S, Roth HL. Circadian rhythm and sleep influences on digestive physiology and disorders. ChonoPhysiology and Therapy. 2014;4:67-77. https://doi.org/10.2147/CPT.S44806.
  29. Konturek PC, Brzozowski T, Konturek SJ. Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol. 2011;62(6):591-599.
  30. Edwards SM, Cunningham SA, Dunlop AL, Corwin EJ. The maternal gut microbiome during pregnancy. MCN Am J Matern Child Nurs. 2017;42(6):310-317. https://doi.org/ 10.1097/NMC.0000000000000372.
  31. Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470-480. https://doi.org/10.1016/ j.cell.2012.07.008.
  32. Nuriel-Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy. Front Microbiol. 2016;7:1031. https://doi.org/10.3389/fmicb.2016.01031.
  33. Collado MC, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. https://doi.org/10.1038/srep23129.
  34. Dahl C, Stanislawski M, Iszatt N, et al. Gut microbiome of mothers delivering prematurely shows reduced diversity and lower relative abundance of Bifidobacterium and Streptococcus. PLoS One. 2017;12(10):e0184336. https://doi.org/10.1371/journal.pone.0184336.
  35. Kikuchi K, Ben Othman M, Sakamoto K. Sterilized bifidobacteria suppressed fat accumulation and blood glucose level. Biochem Biophys Res Commun. 2018;501(4):1041-1047. https://doi.org/10.1016/j.bbrc.2018.05.105.
  36. Kim SH, Huh CS, Choi ID, et al. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. J Appl Microbiol. 2014;117(3):834-845. https://doi.org/10.1111/jam.12573.
  37. Ruiz L, Delgado S, Ruas-Madiedo P, et al. Bifidobacteria and their molecular communication with the immune system. Front Microbiol. 2017;8:2345. https://doi.org/10.3389/fmicb.2017.02345.
  38. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(6):852. https://doi.org/10.1016/j.chom.2015.05.012.
  39. Turroni F, Milani C, Duranti S, et al. Bifidobacteria and the infant gut: An example of co-evolution and natural selection. Cell Mol Life Sci. 2018;75(1):103-118. https://doi.org/ 10.1007/s00018-017-2672-0.
  40. Thomson P, Medina DA, Garrido D. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization. Food Microbiol. 2018;75:37-46. https://doi.org/10.1016/j.fm.2017.09.001.
  41. Makino H, Kushiro A, Ishikawa E, et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol. 2011;77(19):6788-6793. https://doi.org/ 10.1128/AEM.05346-11.
  42. Fox C, Eichelberger K. Maternal microbiome and pregnancy outcomes. Fertil Steril. 2015;104(6):1358-1363. https://doi.org/10.1016/j.fertnstert.2015.09.037.
  43. Romero R, Hassan SS, Gajer P, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2(1):4. https://doi.org/10.1186/2049-2618-2-4.
  44. Kosti I, Lyalina S, Pollard KS, et al. Meta-analysis of vaginal microbiome data provides new insights into preterm birth. Front Microbiol. 2020;11:476. https://doi.org/10.3389/fmicb.2020.00476.
  45. DiGiulio DB, Callahan BJ, McMurdie PJ, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci U S A. 2015;112(35):11060-11065. https://doi.org/10.1073/pnas.1502875112.
  46. Witkin SS, Mendes-Soares H, Linhares IM, et al. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: Implications for protection against upper genital tract infections. mBio. 2013;4(4):e00460-13. https://doi.org/10.1128/mBio.00460-13.
  47. Smith SB, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595(2):451-463. https://doi.org/10.1113/JP271694.
  48. Hearps A, Gugasyan R, Srbinovski D, et al. Lactic. AIDS Res Human Retroviruses. 2014;30(S1):A238-A239. https://doi.org/10.1089/aid.2014.5527.abstract.
  49. Mossop H, Linhares IM, Bongiovanni AM, et al. Influence of lactic acid on endogenous and viral RNA-induced immune mediator production by vaginal epithelial cells. Obstet Gynecol. 2011;118(4):840-846. https://doi.org/10.1097/AOG.0b013e31822da9e9.
  50. Petricevic L, Domig KJ, Nierscher FJ, et al. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci Rep. 2014;4:5136. https://doi.org/ 10.1038/srep05136.
  51. Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. https://doi.org/10.1126/scitranslmed.3008599.
  52. Steel JH, Malatos S, Kennea N, et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res. 2005;57(3):404-411. https://doi.org/10.1203/01.PDR.0000153869.96337.90.
  53. Stout MJ, Conlon B, Landeau M, et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol. 2013;208(3):226.e1-226.e2267. https://doi.org/10.1016/ j.ajog.2013.01.018.
  54. Cao B, Mysorekar IU. Intracellular bacteria in placental basal plate localize to extravillous trophoblasts. Placenta. 2014;35(2):139-142. https://doi.org/10.1016/j.placenta.2013.12.007.
  55. Seferovic MD, Pace RM, Carroll M, et al. Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol. 2019;221(2):146.e1-146.e23. https://doi.org/10.1016/ j.ajog.2019.04.036.
  56. Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. Review: Maternal health and the placental microbiome. Placenta. 2017;54:30-37. https://doi.org/10.1016/j.placenta. 2016.12.003.
  57. Chu DM, Antony KM, Ma J, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8(1):77. https://doi.org/10.1186/s13073-016-0330-z.
  58. Satokari R, Grönroos T, Laitinen K, et al. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol. 2009;48(1):8-12. https://doi.org/10.1111/j.1472-765X.2008.02475.x.
  59. Nakamura Y, Tamura H, Kashida S, et al. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J Pineal Res. 2001;30(1):29-33. https://doi.org/10.1034/j.1600-079x.2001.300104.x.
  60. Ivanov DO, Evsyukova II, Mazzoccoli G, et al. The role of prenatal melatonin in the regulation of childhood obesity. Biology (Basel). 2020;9(4):72. https://doi.org/10.3390/ biology9040072.
  61. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update. 2014;20(2):293-307. https://doi.org/10.1093/humupd/dmt054.
  62. Sagrillo-Fagundes L, Soliman A, Vaillancourt C. Maternal and placental melatonin: Actions and implication for successful pregnancies. Minerva Ginecol. 2014;66(3):251-266.
  63. Raikhlin NT, Kvetnoy IM, Tolkachev VN. Melatonin may be synthesised in enterochromaffin cells. Nature. 1975;255(5506): 344-345. https://doi.org/10.1038/255344a0.
  64. Pevet P, Challet E. Melatonin: Both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris. 2011;105(4-6):170-182. https://doi.org/10.1016/ j.jphysparis.2011.07.001.
  65. Ramracheya RD, Muller DS, Squires PE, et al. Function and expression of melatonin receptors on human pancreatic islets. J Pineal Res. 2008;44(3):273-279. https://doi.org/ 10.1111/j.1600-079X.2007.00523.x.
  66. Arendt J. Melatonin and human rhythms. Chronobiol Int. 2006;23(1-2):21-37. https://doi.org/10.1080/07420520500 464361.
  67. Polidarová L, Olejníková L, Paušlyová L, et al. Development and entrainment of the colonic circadian clock during ontogenesis. Am J Physiol Gastrointest Liver Physiol. 2014;306(4):G346-G356. https://doi.org/10.1152/ajpgi.00340.2013.
  68. Koleva PT, Kim JS, Scott JA, Kozyrskyj AL. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today. 2015;105(4):265-277. https://doi.org/10.1002/bdrc.21117.
  69. Milani C, Duranti S, Bottacini F, et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. https://doi.org/10.1128/MMBR.00036-17.
  70. Tuominen H, Collado MC, Rautava J, et al. Composition and maternal origin of the neonatal oral cavity microbiota. J Oral Microbiol. 2019;11(1):1663084. https://doi.org/ 10.1080/20002297.2019.1663084.
  71. Zheng J, Xiao XH, Zhang Q, et al. Correlation of placental microbiota with fetal macrosomia and clinical characteristics in mothers and newborns. Oncotarget. 2017;8(47):82314-82325. https://doi.org/10.18632/oncotarget.19319.
  72. Hu J, Nomura Y, Bashir A, et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One. 2013;8(11):e78257. https://doi.org/10.1371/journal.pone.0078257.
  73. Nehme PA, Amaral FG, Middleton B, et al. Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series. Neurobiol Sleep Circadian Rhythms. 2019;6:70-76. https://doi.org/10.1016/j.nbscr.2019.04.001.
  74. Meijnikman AS, Gerdes VE, Nieuwdorp M, Herrema H. Evaluating causality of gut microbiota in obesity and diabetes in humans. Endocr Rev. 2018;39(2):133-153. https:/dx.doi.org/0.1210/er.2017-00192.
  75. Gerard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73(1):147-162. https://doi.org/10.1007/s00018-015-2061-5.
  76. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070-11075. https://doi.org/10.1073/pnas. 0504978102.
  77. Racz B, Duskova M, Starka L, et al. Links between the circadian rhythm, obesity and the microbiom. Physiol Res. 2018;67(3):409-420. https://doi.org/10.33549/physiolres. 934020.
  78. Patent Application Publication N US2020/0113954A1. Chiozza G, De Seta F, Olmos S, et al. Pharmaceutical and food composition for the treatment of vaginal and intestinal dysbiosis.
  79. Hermansson H, Kumar H, Collado MC, et al. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr. 2019;6:4. https://doi.org/10.3389/fnut.2019.00004.
  80. Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385-394. https://doi.org/10.1503/cmaj.121189.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Evsyukova I.I., Ailamazyan E.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».