WNT4、HOXA10、TWIST1基因在生殖器外子宫内膜异位症及子宫肌瘤发病机制中的作用分析

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

论证。子宫肌瘤和子宫内膜异位症是育龄妇女最常见的妇科疾病。许多数据表明,存在共同因素的发病机制,这些过度增殖条件。本研究旨在比较分析WNT4HOXA10TWIST1基因在子宫肌瘤及生殖器外子宫内膜异位症发生发展中的作用。

目的是评估子宫肌瘤、生殖器外子宫内膜异位症患者和对照组中多态变异rs7521902(WNT4基因) 和rs4721745(TWIST1基因)的频率;确定生殖器外子宫内膜异位症患者中HOXA10基因罕见等位变异的频率;研究这些基因在子宫肌瘤、生殖器外子宫内膜异位症及对照组子宫内膜中的表达特点。

材料与方法。采用实时聚合酶链反应方法研究WNT4TWIST1基因在生殖器外子宫内膜异位症、子宫肌瘤和对照组中的多态性变异。对生殖器外子宫内膜异位症患者和对照组妇女进行了HOXА10二代基因外显子的测序。采用实时反转录聚合酶链反应方法分析WNT4TWIST1HOXA10基因在实验组患者子宫内膜标本中的表达情况。

结果。子宫肌瘤、生殖器外子宫内膜异位症患者和对照组中多态变异rs7521902(WNT4基因) 和rs4721745(TWIST1基因)的频率无显著性差异。在生殖器外子宫内膜异位症患者中未检测到少量HOXA10等位基因。WNT4基因在生殖器外子宫内膜异位症患者子宫内膜中的表达不受月经周期分期的影响,并与子宫肌瘤患者相比,WNT4基因在子宫内膜中的表达减少1.9倍。生殖器外子宫内膜异位症患者月经周期20-23天子宫内膜中HOXA10基因的表达较对照组显著降低。子宫肌瘤和生殖器外子宫内膜异位症患者子宫内膜中TWIST1基因的表达无变化。

结论。我们没有发现WNT4TWIST基因的多态变异和HOXA10基因的少量变异与子宫肌瘤和生殖器外子宫内膜异位症之间的关联。WNT4HOXA10基因在生殖器外子宫内膜异位症患者的子宫内膜中表达减少,而在子宫肌瘤患者中不表达。在这两种疾病中,所研究的基因在子宫内膜表达性质的变化显著不同。

作者简介

Olga Malysheva

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; Institute of Physiology named after I.P. Pavlov

编辑信件的主要联系方式.
Email: omal99@mail.ru
ORCID iD: 0000-0002-8626-5071

Cand. Sci. (Biol.)

俄罗斯联邦, Saint Petersburg

Arseny Molotkov

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: arseny.molotkov@gmail.com
ORCID iD: 0000-0003-3433-3092
SPIN 代码: 6359-6472

Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Natalya Osinovskaya

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: natosinovskaya@mail.ru
ORCID iD: 0000-0001-7831-9327
SPIN 代码: 3190-2307

Cand. Sci. (Biol.)

俄罗斯联邦, Saint Petersburg

Natalya Shved

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; City Hospital No. 40

Email: natashved@mail.ru
ORCID iD: 0000-0001-6354-9226
SPIN 代码: 8276-1720

Cand. Sci. (Biol.)

俄罗斯联邦, Saint Petersburg

Maria Yarmolinskaya

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
Scopus 作者 ID: 7801562649
Researcher ID: P-2183-2014

MD, Dr. Sci. (Med.), Professor, Professor of the Russian Academy of Sciences

俄罗斯联邦, Saint Petersburg

Vladislav Baranov

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: baranov@vb2475.spb.edu
ORCID iD: 0000-0002-6518-1207
SPIN 代码: 9196-7297

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Honored Scientist of the Russian Federation

俄罗斯联邦, Saint Petersburg

参考

  1. Baranov VS, Ivaschenko TE, Yarmolinskaya MI. Comparative systems genetics view of endometriosis and uterine leiomyoma: Two sides of the same coin? Syst Biol Reprod Med. 2016;62(2):93–105. doi: 10.3109/19396368.2015.1123325
  2. Nezhat C, Li A, Abed S, et al. Strong association between endometriosis and symptomatic leiomyomas. J Soc Laparoendosc Surg. 2016;20(3). doi: 10.4293/JSLS.2016.00053
  3. Baranov VS, Osinovskaya NS, Yarmolinskaya MI. Pathogenomics of uterine fibroids development. Int J Mol Sci. 2019;20(24). doi: 10.3390/ijms20246151
  4. Rafnar T, Gunnarsson B, Stefansson OA, et al. Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. Nat Commun. 2018;9(1):1–9. doi: 10.1038/s41467-018-05428-6
  5. Gallagher CS, Mäkinen N, Harris HR, et al. Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis. Nat Commun. 2019;10(1):1–11. doi: 10.1038/s41467-019-12536-4
  6. Redwine DB. Was Sampson wrong? Fertil Steril. 2002;78(4):686–693. doi: 10.1016/s0015-0282(02)03329-0
  7. Osinovskaya NS, Malysheva OV, Shved NY, et al. Frequency and spectrum of MED12 Exon 2 mutations in multiple versus solitary uterine leiomyomas from Russian patients. Int J Gynecol Pathol. 2016;35(6):509–515. doi: 10.1097/PGP.0000000000000255
  8. Cousins FL, O DF, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2018;50:27–38. doi: 10.1016/j.bpobgyn.2018.01.011
  9. Laganà AS, Vitale SG, Salmeri FM, et al. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med Hypotheses. 2017;103:10–20. doi: 10.1016/j.mehy.2017.03.032
  10. Ono M, Yin P, Navarro A, et al. Paracrine activation of WNT/-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci USA. 2013;110(42):17053–17058. doi: 10.1073/pnas.1313650110
  11. Wu HH, Wang NM, Lin CY, Tsai HD. Genetic alterations of HOXA10 and their effect on the severity of endometriosis in a Taiwanese population. Reprod Biomed Online. 2008;16(3):416–424. doi: 10.1016/s1472-6483(10)60604-9
  12. Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med. 2004;351(8):792–798. doi: 10.1056/NEJMoa040533
  13. Zanatta A, Rocha AM, Carvalho FM, et al. The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: A review. J Assist Reprod Genet. 2010;27(12):701–710. doi: 10.1007/s10815-010-9471-y
  14. Franco HL, Dai D, Lee KY, et al. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 2011;25(4):1176–1187. doi: 10.1096/fj.10-175349
  15. Godbole GB, Modi DN, Puri CP. Regulation of homeobox A10 expression in the primate endometrium by progesterone and embryonic stimuli. Reproduction. 2007;134(3):513–523. doi: 10.1210/en.2017-00032
  16. Nyholt DR, Low SK, Anderson CA, et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat Genet. 2012;44(12):1355–1359. doi: 10.1038/ng.2445
  17. Pagliardini L, Gentilini D, Vigano P, et al. An Italian association study and meta-analysis with previous GWAS confirm WNT4, CDKN2BAS and FN1 as the first identified susceptibility loci for endometriosis. J Med Genet. 2013;50(1):43–46. doi: 10.1136/jmedgenet-2012-101257
  18. Wu Z, Yuan M, Li Y, et al. Analysis of WNT4 polymorphism in Chinese Han women with endometriosis. Reprod Biomed Online. 2015;30(4):415–420. doi: 10.1016/j.rbmo.2014.12.010
  19. Lin J, Zong L, Kennedy SH, Zondervan KT. Coding regions of INHBA, SFRP4 and HOXA10 are not implicated in familial endometriosis linked to chromosome 7p13–15. Mol Hum Reprod. 2011;17(10):605–611. doi: 10.1093/molehr/gar035
  20. Konrad L, Dietze R, Riaz MA, et al. Epithelial-mesenchymal transition in endometriosis-when does it happen? J Clin Med. 2020;9(6):1915. doi: 10.3390/jcm9061915
  21. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–890. doi: 10.1016/j.cell.2009.11.007
  22. Proestling K, Birner P, Balendran S, et al. Enhanced expression of the stemness-related factors OCT4, SOX15 and TWIST1 in ectopic endometrium of endometriosis patients. Reprod Biol Endocrinol. 2016;14(1):1–11. doi: 10.1186/s12958-016-0215-4
  23. Yang YM, Yang WX. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget. 2017;8(25):41679–41689. doi: 10.18632/oncotarget.16472
  24. Bostanci MS, Bayram M, Bakacak SM, et al. The role of TWIST, SERPINB5, and SERPIN1 genes in uterine leiomyomas. J Turkish Ger Gynecol Assoc. 2014;15(2):92–95. doi: 10.5152/jtgga.2014.13005
  25. Yang L, Wang YJ, Zheng LY, et al. Genetic polymorphisms of TGFB1, TGFBR1, SNAI1 and TWIST1 are associated with endometrial cancer susceptibility in Chinese han women. PLoS One. 2016;11(5):1–17. doi: 10.1371/journal.pone.0155270
  26. Angioni S, D’alterio MN, Coiana A, et al. Genetic characterization of endometriosis patients: Review of the literature and a prospective cohort study on a mediterranean population. Int J Mol Sci. 2020;21(5). doi: 10.3390/ijms21051765
  27. Bui TD, Zhang L, Rees MC, et al. Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer. 1997;75(8):1131–1136. doi: 10.1038/bjc.1997.195
  28. Tulac S, Nayak NR, Kao LC, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J Clin Endocrinol Metab. 2003;88(8):3860–3866. doi: 10.1210/jc.2003-030494
  29. Liang Y, Li Y, Liu K, et al. Expression and significance of WNT4 in ectopic and eutopic endometrium of human endometriosis. Reprod Sci. 2016;23(3):379–385. doi: 10.1177/1933719115602763
  30. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379–1384. doi: 10.1172/JCI1057
  31. Taylor H, Olive D, Arici A. HOXA10 gene expression is altered in the endometrium of patients with endometriosis. J Soc Gynecol Investig. 1998;5(1):111A–111A. doi: 10.1093/humrep/14.5.1328
  32. Wang M, Hao C, Huang X, et al. Aberrant expression of lncRNA (HOXA11-AS1) and homeobox A (HOXA9, HOXA10, HOXA11, and HOXA13) genes in infertile women with endometriosis. Reprod Sci. 2018;25(5):654–661. doi: 10.1177/1933719117734320
  33. Rackow BW, Taylor HS. Submucosal uterine leiomyomas have a global effect on molecular determinants of endometrial receptivity. Fertil Steril. 2010;93(6):2027–2034. doi: 10.1016/j.fertnstert.2008.03.029
  34. Ulukus M. Stem cells in endometrium and endometriosis. Womens Health. 2015;11(5):587–595. doi: 10.2217/whe.15.43
  35. Li J, Ma J, Fei X, et al. Roles of cell migration and invasion mediated by Twist in endometriosis. J Obstet Gynaecol Res. 2019;45(8):1488–1496. doi: 10.1111/jog.14001

补充文件

附件文件
动作
1. JATS XML
2. 图 HOXA10、TWIST1、WNT4基因在生殖器外子宫内膜异位症患者、子宫肌瘤患者及第二组对照组月经周期天数子宫内膜中的表达:LM—子宫肌瘤;EM—生殖器外子宫内膜异位症;contr—第二对照组;数字对应于月经周期的天数

下载 (111KB)

版权所有 © Malysheva O., Molotkov A., Osinovskaya N., Shved N., Yarmolinskaya M., Baranov V., 2021



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».